【題目】在平面直角坐標系中,點A、B、C的坐標分別為、、,點E是的外接圓上一點,BE交線段AC于點D,若,則點D的坐標為______.
【答案】
【解析】
連接CE,過E作EF⊥AC于F,根據已知條件得到OA=OB=2,OC=4,得到△OBA是等腰直角三角形,得到∠BAC=45°,根據圓周角定理得到∠BEC=∠BAC=45°,推出△BCE是等腰直角三角形,求得BC=CE,根據全等三角形的性質得到E(2,﹣4),待定系數法得到直線BE的解析式為y=﹣3x+2,于是得到結論.
連接CE,過E作EF⊥AC于F.
∵點A、B、C的坐標分別為(﹣2,0)、(0,2)、(4,0),∴OA=OB=2,OC=4,∴△OBA是等腰直角三角形,∴∠BAC=45°,∴∠BEC=∠BAC=45°.
∵∠DBC=45°,∴∠BCE=90°,∴△BCE是等腰直角三角形,∴BC=CE.
∵∠CBO+∠BCO=∠BOC+∠ECF=90°,∴∠OBC=∠FCE.
在△OBC與△FCE中,∵,∴△OBC≌△FCE(AAS),∴CF=OB=2,EF=OC=4,∴OF=2,∴E(2,﹣4),設直線BE的解析式為y=kx+b,∴,∴,∴直線BE的解析式為y=﹣3x+2,當y=0時,x,∴D(,0).
故答案為:(,0).
科目:初中數學 來源: 題型:
【題目】如圖,在正方形ABCD中,E、F分別是邊AD、CD上的點,AE=ED,DF:DC=1:4,連接EF并延長交BC的延長線于點G.
(1)求證:△ABE∽△DEF;
(2)若正方形的邊長為10,求BG的長.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】計算:在一次數學社團活動課上,同學們測量一座古塔CD的高度,他們首先在A處安置測量器,測得塔頂C的仰角∠CFE=30°,然后往塔的方向前進100米到達B處,此時測得塔頂C的仰角∠CGE=60°,已知測量器高1.5米,請你根據以上數據計算出古塔CD的高度.(保留根號)
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】已知:在Rt△ABC中,∠B=90°,BC=4cm,AB=8cm,D、E、F分別為AB、AC、BC邊上的中點.若P為AB邊上的一個動點,PQ∥BC,且交AC于點Q,以PQ為一邊,在點A的異側作正方形PQMN,記正方形PQMN與矩形EDBF的公共部分的面積為y.
(1)如圖,當AP=3cm時,求y的值;
(2)設AP=xcm,試用含x的代數式表示y(cm2);
(3)當y=2cm2時,試確定點P的位置.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】下列說法正確的是
A. 某種彩票的中獎機會是則買100張這種彩票一定會中獎
B. 為了解全國中學生的睡眠情況,應該采用普查的方式
C. 一組數據3,4,5,5,5,6,10的平均數大于中位數
D. 同時拋擲兩枚均勻的硬幣,出現一枚正面朝上且另一枚反面朝上的概率是
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖是二次函數y=ax2+bx+c(a,b,c是常數,a≠0)圖象的一部分,與x軸的交點A在點(2,0)和(3,0)之間,對稱軸是x=1.對于下列說法:①ab<0;②2a+b=0;③3a+c>0;④a+b≥m(am+b)(m為實數);⑤當﹣1<x<3時,y>0,其中正確的是( )
A. ①②④ B. ①②⑤ C. ②③④ D. ③④⑤
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】某種蔬菜每千克售價(元)與銷售月份之間的關系如圖1所示,每千克成本(元)與銷售月份之間的關系如圖2所示,其中圖1中的點在同一條線段上,圖2中的點在同一條拋物線上,且拋物線的最低點的坐標為(6,1).
(1)求出與之間滿足的函數表達式,并直接寫出的取值范圍;
(2)求出與之間滿足的函數表達式;
(3)設這種蔬菜每千克收益為元,試問在哪個月份出售這種蔬菜,將取得最大值?并求出此最大值.(收益=售價-成本)
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,AD是△ABC的角平分線,線段AD的垂直平分線分別交AB和AC于點E、F,連接DE、DF.
(1)試判定四邊形AEDF的形狀,并證明你的結論.
(2)若DE=13,EF=10,求AD的長.
(3)△ABC滿足什么條件時,四邊形AEDF是正方形?
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在平面直角坐標系中,已知點A的坐標是(4,0),并且OA=OC=4OB,動點P在過A,B,C三點的拋物線上.
(1)求拋物線的解析式;
(2)是否存在點P,使得△ACP是以AC為直角邊的直角三角形?若存在,求出所有符合條件的點P的坐標;若不存在,說明理由;
(3)過動點P作PE垂直于y軸于點E,交直線AC于點D,過點D作x軸的垂線.垂足為F,連接EF,當線段EF的長度最短時,求出點P的坐標.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com