精英家教網 > 初中數學 > 題目詳情
如圖,在平行四邊形ABCD中,AB=5,BC=10,F為AD的中點,CE⊥AB于E,設∠ABC=α(60°≤α<90°).
(1)當α=60°時,求CE的長;
(2)當60°<α<90°時,
①是否存在正整數k,使得∠EFD=k∠AEF?若存在,求出k的值;若不存在,請說明理由.
②連接CF,當CE2-CF2取最大值時,求tan∠DCF的值.

【答案】分析:(1)利用60°角的正弦值列式計算即可得解;
(2)①連接CF并延長交BA的延長線于點G,利用“角邊角”證明△AFG和△DFC全等,根據全等三角形對應邊相等可得CF=GF,AG=CD,再利用直角三角形斜邊上的中線等于斜邊的一半可得EF=GF,再根據AB、BC的長度可得AG=AF,然后利用等邊對等角的性質可得∠AEF=∠G=∠AFG,根據三角形的一個外角等于與它不相鄰的兩個內角的和可得∠EFC=2∠G,然后推出∠EFD=3∠AEF,從而得解;
②設BE=x,在Rt△BCE中,利用勾股定理表示出CE2,表示出EG的長度,在Rt△CEG中,利用勾股定理表示出CG2,從而得到CF2,然后相減并整理,再根據二次函數的最值問題解答.
解答:解:(1)∵α=60°,BC=10,
∴sinα=
即sin60°==,
解得CE=5;

(2)①存在k=3,使得∠EFD=k∠AEF.
理由如下:連接CF并延長交BA的延長線于點G,
∵F為AD的中點,
∴AF=FD,
在平行四邊形ABCD中,AB∥CD,
∴∠G=∠DCF,
在△AFG和△DFC中,,
∴△AFG≌△DFC(AAS),
∴CF=GF,AG=CD,
∵CE⊥AB,
∴EF=GF(直角三角形斜邊上的中線等于斜邊的一半),
∴∠AEF=∠G,
∵AB=5,BC=10,點F是AD的中點,
∴AG=5,AF=AD=BC=5,
∴AG=AF,
∴∠AFG=∠G,
在△EFG中,∠EFC=∠AEF+∠G=2∠AEF,
又∵∠CFD=∠AFG(對頂角相等),
∴∠CFD=∠AEF,
∴∠EFD=∠EFC+∠CFD=2∠AEF+∠AEF=3∠AEF,
因此,存在正整數k=3,使得∠EFD=3∠AEF;

②設BE=x,∵AG=CD=AB=5,
∴EG=AE+AG=5-x+5=10-x,
在Rt△BCE中,CE2=BC2-BE2=100-x2,
在Rt△CEG中,CG2=EG2+CE2=(10-x)2+100-x2=200-20x,
∵CF=GF(①中已證),
∴CF2=(CG)2=CG2=(200-20x)=50-5x,
∴CE2-CF2=100-x2-50+5x=-x2+5x+50=-(x-2+50+,
∴當x=,即點E是AB的中點時,CE2-CF2取最大值,
此時,EG=10-x=10-=,
CE===,
所以,tan∠DCF=tan∠G===
點評:本題考查了平行四邊形的性質,全等三角形的判定與性質,直角三角形斜邊上的中線等于斜邊的一半的性質,勾股定理的應用,二次函數的最值問題,作出輔助線構造出全等三角形是解題的關鍵,另外根據數據的計算求出相等的邊長也很重要.
練習冊系列答案
相關習題

科目:初中數學 來源: 題型:

17、如圖,在平行四邊形ABCD中,EF∥AD,GH∥AB,EF、GH相交于點O,則圖中共有
9
個平行四邊形.

查看答案和解析>>

科目:初中數學 來源: 題型:

精英家教網如圖,在平行四邊形ABCD中,∠ABC的平分線交CD于點E,∠ADC的平分線交AB于點F,證明:四邊形DFBE是平行四邊形.

查看答案和解析>>

科目:初中數學 來源: 題型:

如圖,在平行四邊形ABCD中,∠C=60°,BC=6厘米,DC=7厘米.點M是邊AD上一點,且DM:AD=1:3.點E、F分別從A、C同時出發(fā),以1厘米/秒的速度分別沿AB、CB向點B運動(當點F運動到點B時,點E隨之停止運動),EM、CD精英家教網的延長線交于點P,FP交AD于點Q.設運動時間為x秒,線段PC的長為y厘米.
(1)求y與x之間函數關系式,并寫出自變量x的取值范圍;
(2)當x為何值時,PF⊥AD?

查看答案和解析>>

科目:初中數學 來源: 題型:

精英家教網如圖,在平行四邊形ABCD中,AB=2
2
AO=
3
,OB=
5
,則下列結論中不正確的是(  )
A、AC⊥BD
B、四邊形ABCD是菱形
C、△ABO≌△CBO
D、AC=BD

查看答案和解析>>

科目:初中數學 來源: 題型:

(2013•同安區(qū)一模)如圖,在平行四邊形ABCD中,已知∠ODA=90°,AC=10cm,BD=6cm,則AD的長為
4cm
4cm

查看答案和解析>>

同步練習冊答案