【題目】如圖,四邊形ABCD內(nèi)接于⊙O,∠BAD =90°,AC是對角線.點E在BC的延長線上,且∠CED =∠BAC.
(1)判斷DE與⊙O的位置關(guān)系,并說明理由;
(2)BA與CD的延長線交于點F,若DE∥AC,AB=4,AD =2,求AF的長.
【答案】(1)DE與⊙O相切,證明見解析;(2).
【解析】
(1)連接BD,先根據(jù)圓周角定理證明BD是⊙O的直徑,證明∠BDC+∠CDE=90°,即BD⊥DE,即可得出DE與⊙O相切;
(2)先根據(jù)平行線的性質(zhì)得∠BHC=∠BDE=90°,由垂徑定理得AH=CH,由垂直平分線的性質(zhì)得BC=AB=4,CD=AD=2,證明△FAD∽△FCB,列比例式得CF=2AF,設(shè)AF=x,則DF=CF-CD=2x-2,根據(jù)勾股定理列方程可解答.
解:(1)DE與⊙O相切,
理由是:連接BD,如下圖,
∵四邊形ABCD內(nèi)接于⊙O,∠BAD=90°,
∴BD是⊙O的直徑,即點O在BD上,
∴∠BCD=90°,
∴∠CED+∠CDE=90°.
∵∠CED=∠BAC,
又∵∠BAC=∠BDC,
∴∠CED=∠BDC,
∴∠BDC+∠CDE=90°,即∠BDE=90°,
∴DE⊥BD于點D,
∴DE與⊙O相切.
(2)如下圖,BD與AC交于點H,
∵DE∥AC,
∴∠BHC=∠BDE=90°.
∴BD⊥AC.
∴AH=CH.
∴BC=AB=4,CD=AD=2.
∵∠FAD=∠FCB=90°,∠F=∠F,
∴△FAD∽△FCB,
,
∴CF=2AF,
設(shè)AF=x,則DF=CF-CD=2x-2.
在Rt△ADF中,DF2=AD2+AF2,
∴(2x-2)2=22+x2.
解得: (舍去),
.
科目:初中數(shù)學 來源: 題型:
【題目】某商店準備購進兩種商品,種商品毎件的進價比種商品每件的進價多20元,用3000元購進種商品和用1800元購進種商品的數(shù)量相同.商店將種商品每件的售價定為80元,種商品每件的售價定為45元.
(1)種商品每件的進價和種商品每件的進價各是多少元?
(2)商店計劃用不超過1560元的資金購進兩種商品共40件,其中種商品的數(shù)量不低于種商品數(shù)量的一半,該商店有幾種進貨方案?
(3)端午節(jié)期間,商店開展優(yōu)惠促銷活動,決定對每件種商品售價優(yōu)惠()元,種商品售價不變,在(2)條件下,請設(shè)計出銷售這40件商品獲得總利潤最大的進貨方案.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,矩形OABC在直角坐標系中,延長AB至點E使得BE=BC連接CE,過A作AD//CE交CB延長線于點D,直線DE分別交x軸、y軸于F、G點,若EG:DF=1:4,且△BCE與△BAD面積之和為,則過點的雙曲線中的值為____.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖1,,,是鄭州市二七區(qū)三個垃圾存放點,點,分別位于點的正北和正東方向,米.八位環(huán)衛(wèi)工人分別測得的長度如下表:
甲 | 丁 | 丙 | 丁 | 戊 | 戌 | 申 | 辰 | |
(單位:) | 84 | 76 | 78 | 82 | 70 | 84 | 86 | 80 |
他們又調(diào)查了各點的垃圾量,并繪制了下列間不完整的統(tǒng)計圖2.
(1)表中的中位數(shù)是 、眾數(shù)是 ;
(2)求表中長度的平均數(shù);
(3)求處的垃圾量,并將圖2補充完整;
(4)用(2)中的作為的長度,要將處的垃圾沿道路都運到處,已知運送1千克垃圾每米的費用為0.005元,求運垃圾所需的費用.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,矩形中,,,E是邊的中點,點P在邊上,設(shè),若以點D為圓心,為半徑的與線段只有一個公共點,則所有滿足條件的x的取值范圍是______.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在平面直角坐標系中,點A、B、C的坐標分別為(-1,3)、(-4,1)、(-2,1),將△ABC沿一確定方向平移得到△A1B1C1,點B的對應(yīng)點B1的坐標是(1,2),則點A1,C1的坐標分別是( )
A.A1(4,4),C1(3,2)B.A1(3,3),C1(2,1)
C.A1(4,3),C1(2,3)D.A1(3,4),C1(2,2)
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某工廠制作兩種手工藝品,每天每件獲利比多105元,獲利30元的與獲利240元的數(shù)量相等.
(1)制作一件和一件分別獲利多少元?
(2)工廠安排65人制作,兩種手工藝品,每人每天制作2件或1件.現(xiàn)在在不增加工人的情況下,增加制作.已知每人每天可制作1件(每人每天只能制作一種手工藝品),要求每天制作,兩種手工藝品的數(shù)量相等.設(shè)每天安排人制作,人制作,寫出與之間的函數(shù)關(guān)系式.
(3)在(1)(2)的條件下,每天制作不少于5件.當每天制作5件時,每件獲利不變.若每增加1件,則當天平均每件獲利減少2元.已知每件獲利30元,求每天制作三種手工藝品可獲得的總利潤(元)的最大值及相應(yīng)的值.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,二次函數(shù)y=-x2+(n-1)x+3的圖像與y軸交于點A,與x軸的負半軸交于點B(-2,0)
(1)求二次函數(shù)的解析式;
(2)點P是這個二次函數(shù)圖像在第二象限內(nèi)的一線,過點P作y軸的垂線與線段AB交于點C,求線段PC長度的最大值.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】國內(nèi)豬肉價格不斷上漲,已知今年10月的豬肉價格比今年年初上漲了80%,李奶奶10月在某超市購買1千克豬肉花了72元錢.
(1)今年年初豬肉的價格為每千克多少元?
(2)某超市將進貨價為每千克55元的豬肉按10月價格出售,平均一天能銷售出100千克,隨著國家對豬肉價格的調(diào)控,超市發(fā)現(xiàn)豬肉的售價每千克下降1元,其日銷售量就增加10千克,超市為了實現(xiàn)銷售豬肉每天有1800元的利潤,并且盡可能讓顧客得到實惠,豬肉的售價應(yīng)該下降多少元?
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com