一元二次方程ax2-bx+c=0在(0,1)中有兩個不同的實數(shù)根,其中a,b,c是整數(shù).求證:具有這種性質的a的最小正整數(shù)值存在.
分析:求出b2-4ac>0,求出當x=0、x=1時,y的值推出c(a-b+c)=ac-bc+c2>0,解不等式得到bc-c2<ac<
b2
4
,求出當c>0時,有b-c<a<
b2
4c
,推出
b2
4c
為正整數(shù),分別討論①|b|=2,c=1時,a無最小整數(shù)值;②|b|=4,c=1時,a有最小整數(shù)值1;③|b|=2,c=-1時,有-1<a<1或-1<a<3,此時a有最小整數(shù)值1,根據(jù)結論即可得到答案.
解答:證明:設f(x)=ax2-bx+c,
∵一元二次方程ax2-bx+c=0在(0,1)中有兩個不同的實數(shù)根,
∴b2-4ac>0,且f(0)•f(1)>0,即曲線的端點值同號,
當x=0時,y=c,
當x=1時,y=a-b+c,即c(a-b+c)=ac-bc+c2>0,
解上述不等式bc-c2<ac<
b2
4
,a b c均為整數(shù),c=0時不等式不成立,
∴c≠0,
∴b2≥4,
|b|≥2,
當c>0時,有b-c<a<
b2
4c
,
b2
4c
為正整數(shù),
|b|=2,c=1時,有-3<a<1或-1<a<1,此時a無最小整數(shù)值;
|b|=4,c=1時,有-5<a<4或3<a<4,此時a有最小整數(shù)值;
若c<0,有
b2
4c
<a<b-c,且
b2
4c
為負整數(shù),
|b|=2,c=-1時,有-1<a<1或-1<a<3,此時a有最小整數(shù)值,
綜合上述:a的最小整數(shù)值是1.
∴具有這種性質的a的最小正整數(shù)值存在.
點評:本題主要考查對根的判別式,一元二次方程的根的分布等知識點的理解和掌握,能根據(jù)性質進行推理是解此題的關鍵.
練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

3、一元二次方程ax2+bx+c=0滿足4a-2b+c=0,其必有一根是( 。

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

7、若a,b,c為正數(shù),已知關于x的一元二次方程ax2+bx+c=0有兩個相等的實根,則方程(a+1)x2+(b+2)x+c+1=0的根的情況是(  )

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

一元二次方程ax2+bx+c=0(a≠0,b2-4ac≥0)的兩實根之和(  )
A、與c無關B、與b無關C、與a無關D、與a,b,c都有關

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

(2012•泰安)二次函數(shù)y=ax2+bx的圖象如圖,若一元二次方程ax2+bx+m=0有實數(shù)根,則m的最大值為( 。

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

若x1、x2為一元二次方程ax2+bx+c=0(a≠0)的兩根,則有x1+x2=-
b
a
,x1•x2=
c
a
,根據(jù)材料回答問題:若x1、x2是一元二次方程2x2-4x+1=0的兩根,則(x1+1)(x2+1)=
7
2
7
2

查看答案和解析>>

同步練習冊答案