【題目】如圖,在平行四邊形ABCD中,平分,交于點(diǎn),平分,交于點(diǎn),與交于點(diǎn),連接,.
(1)求證:四邊形是菱形;
(2)若,,,求的值.
【答案】(1)證明見(jiàn)解析;(2).
【解析】
(1)根據(jù)AE平分∠BAD、BF平分∠ABC及平行四邊形的性質(zhì)可得AF=AB=BE,從而可知ABEF為平行四邊形,又鄰邊相等,可知為菱形;
(2)由菱形的性質(zhì)可知AP的長(zhǎng)及∠PAF=60°,過(guò)點(diǎn)P作PH⊥AD于H,即可得到PH、DH的長(zhǎng),從而可求tan∠ADP
解:(1)∵AE平分∠BAD,BF平分∠ABC
∴∠BAE=∠EAF ,∠ABF=∠EBF
∵AD//BC
∴∠EAF=∠AEB,∠AFB=∠EBF
∴∠BAE=∠AEB,∠AFB=∠ABF
∴AB=BE,AB=AF
∴AF=AB=BE
∵AD//BC
∴四邊形ABEF為平行四邊形
又AB=BE
∴ABEF為菱形;
(2)作PH⊥AD于H
由∠ABC=60°而(1)可知∠PAF=60°,PA=2,
則有PH=,AH=1,
∴DH=AD-AH=5
∴tan∠ADP=.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖所示,在平面直角坐標(biāo)系中,等邊三角形OAB的一條邊OB在x軸的正半軸上,點(diǎn)A在雙曲線(xiàn)y=(k≠0)上,其中點(diǎn)B為(2,0).
(1)求k的值及點(diǎn)A的坐標(biāo)
(2)△OAB沿直線(xiàn)OA平移,當(dāng)點(diǎn)B恰好在雙曲線(xiàn)上時(shí),求平移后點(diǎn)A的對(duì)應(yīng)點(diǎn)A’的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在菱形中,是的中點(diǎn).請(qǐng)按要求完成下列作圖,
①僅用無(wú)刻度直尺,不能用直尺中的直角;②保留作圖痕跡
(1)在圖1中,過(guò)點(diǎn)作的平行線(xiàn),與交于點(diǎn).
(2)在圖2中,作線(xiàn)段的中垂線(xiàn),垂足為點(diǎn).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,矩形AOBC放置在平面直角坐標(biāo)系xOy中,邊OA在y軸的正半軸上,邊OB在x軸的正半軸上,拋物線(xiàn)的頂點(diǎn)為F,對(duì)稱(chēng)軸交AC于點(diǎn)E,且拋物線(xiàn)經(jīng)過(guò)點(diǎn)A(0,2),點(diǎn)C,點(diǎn)D(3,0).∠AOB的平分線(xiàn)是OE,交拋物線(xiàn)對(duì)稱(chēng)軸左側(cè)于點(diǎn)H,連接HF.
(1)求該拋物線(xiàn)的解析式;
(2)在x軸上有動(dòng)點(diǎn)M,線(xiàn)段BC上有動(dòng)點(diǎn)N,求四邊形EAMN的周長(zhǎng)的最小值;
(3)該拋物線(xiàn)上是否存在點(diǎn)P,使得四邊形EHFP為平行四邊形?如果存在,求出點(diǎn)P的坐標(biāo);如果不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知二次函數(shù)y=ax2+bx﹣3a經(jīng)過(guò)點(diǎn)A(﹣1,0)、C(0,3),與x軸交于另一點(diǎn)B,拋物線(xiàn)的頂點(diǎn)為D.
(1)求此二次函數(shù)解析式;
(2)連接DC、BC、DB,求證:△BCD是直角三角形;
(3)在對(duì)稱(chēng)軸右側(cè)的拋物線(xiàn)上是否存在點(diǎn)P,使得△PDC為等腰三角形?若存在,求出符合條件的點(diǎn)P的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在Rt△ABC中,∠BAC=90°,AB=6,AC=8,P為邊BC上一動(dòng)點(diǎn),PE⊥AB于E,PF⊥AC于F,M為EF中點(diǎn),則AM的最小值是 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知在平面直角坐標(biāo)系中有兩點(diǎn)A(0,1),B(﹣1,0),動(dòng)點(diǎn)P在反比例函數(shù)y=的圖象上運(yùn)動(dòng),當(dāng)線(xiàn)段PA與線(xiàn)段PB之差的絕對(duì)值最大時(shí),點(diǎn)P的坐標(biāo)為_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在“用頻率估計(jì)概率”的實(shí)驗(yàn)中,統(tǒng)計(jì)了某種結(jié)果出現(xiàn)的頻率,繪制了下面的折線(xiàn)圖,那么符合這一結(jié)果的實(shí)驗(yàn)最有可能的是( )
A.洗勻后的1張紅桃,2張黑桃牌,從中隨機(jī)抽取一張牌是黑桃
B.“石頭、剪刀、布”的游戲,小王隨機(jī)出的是“剪刀”
C.擲一枚質(zhì)地均勻的硬幣,落地時(shí)結(jié)果是“正面向上”
D.擲一個(gè)質(zhì)地均勻的正六面體骰子,落地時(shí)朝上面的點(diǎn)數(shù)是6
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】綜合與探究
如圖,在平面直角坐標(biāo)系中,點(diǎn)為坐標(biāo)原點(diǎn),拋物線(xiàn)與軸交于點(diǎn),與軸交于點(diǎn),,拋物線(xiàn)的對(duì)稱(chēng)軸交拋物線(xiàn)于點(diǎn),交軸于點(diǎn),交直線(xiàn)于點(diǎn).
(1)求拋物線(xiàn)的函數(shù)表達(dá)式及其對(duì)稱(chēng)軸:
(2)點(diǎn)是線(xiàn)段上一點(diǎn),且,求點(diǎn)的坐標(biāo);
(3)若點(diǎn)是拋物線(xiàn)上任意一點(diǎn),點(diǎn)是直線(xiàn)上任意一點(diǎn),點(diǎn)是平面上任意一點(diǎn),是否存在這樣的點(diǎn),,,使得以點(diǎn),,,為頂點(diǎn)的四邊形是正方形,若存在,請(qǐng)直接寫(xiě)出點(diǎn)的坐標(biāo),若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com