(2013•龍灣區(qū)一模)如圖,已知AB∥CD,直線EF分別交AB,CD于點(diǎn) E,F(xiàn),F(xiàn)G平分∠EFD交AB于點(diǎn)G,若∠EFD=70°,則∠EGF的度數(shù)是(  )
分析:先根據(jù)角平分線的定義求出∠GFD的度數(shù),再由平行線的性質(zhì)即可得出結(jié)論.
解答:解:∵FG平分∠EFD交AB于點(diǎn)G,∠EFD=70°,
∴∠GFD=
1
2
∠EFD=
1
2
×70°=35°,
∵AB∥CD,
∴∠EGF=∠GFD=35°.
故選C.
點(diǎn)評:本題考查的是平行線的性質(zhì),用到的知識點(diǎn)為;兩直線平行,內(nèi)錯(cuò)角相等.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

(2013•龍灣區(qū)一模)在數(shù)-3,0,1,3中,其中最小的是( 。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2013•龍灣區(qū)一模)已知反比例函數(shù)y=
6
x
,下列各點(diǎn)在該函數(shù)圖象上的是( 。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2013•龍灣區(qū)一模)如圖,△DEF是由△ABC通過平移得到,且點(diǎn)B,E,C,F(xiàn)在同一條直線上.若BF=14,EC=6.則BE的長度是( 。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2013•龍灣區(qū)一模)二次函數(shù)y=-
1
2
x2+
3
2
x+2
的圖象如圖所示,當(dāng)-1≤x≤0時(shí),該函數(shù)的最大值是( 。

查看答案和解析>>

同步練習(xí)冊答案