【題目】把一個足球垂直水平地面向上踢,時間為t(秒)時該足球距離地面的高度h(米)適用公式h=20t﹣5t2(0≤t≤4).
(1)當t=3時,求足球距離地面的高度;
(2)當足球距離地面的高度為10米時,求t;
(3)若存在實數(shù)t1,t2(t1≠t2)當t=t1或t2時,足球距離地面的高度都為m(米),求m的取值范圍.
【答案】(1)、15米;(2)、t=2+或t=2-;(3)、0≤m<20
【解析】
試題分析:(1)、將t=3代入解析式可得;(2)、根據(jù)h=10可得關(guān)于t的一元二次方程,解方程即可;(3)、由題意可得方程20t﹣t2=m 的兩個不相等的實數(shù)根,由根的判別式即可得m的范圍.
試題解析:(1)、當t=3時,h=20t﹣5t2=20×3﹣5×9=15(米),
∴當t=3時,足球距離地面的高度為15米;
(2)、∵h=10, ∴20t﹣5t2=10,即t2﹣4t+2=0, 解得:t=2+或t=2﹣,
故經(jīng)過2+或2﹣時,足球距離地面的高度為10米;
(3)、∵m≥0,由題意得t1,t2是方程20t﹣5t2=m 的兩個不相等的實數(shù)根,
∴b2﹣4ac=202﹣20m>0, ∴m<20, 故m的取值范圍是0≤m<20.
科目:初中數(shù)學 來源: 題型:
【題目】如圖,AD為△ABC的高,BE為△ABC的角平分線,若∠EBA=32°,∠AEB=70°.
(1)求∠CAD的度數(shù);
(2)若點F為線段BC上任意一點,當△EFC為直角三角形時,則∠BEF的度數(shù)為
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,EF∥AB,∠DCB=65°,∠CBF=15°,∠EFB=130°.
(1)直線CD與AB平行嗎?為什么?
(2)若∠CEF=68°,求∠ACB的度數(shù).
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】“十一”黃金周期間,某動物園在天假期中每天旅游的人數(shù)變化如下表(正數(shù)表示比前一天多的人數(shù),負數(shù)表示比前一天少的人數(shù))
日期 | 10月1日 | 10月2日 | 10月3日 | 10月4日 | 10月5日 | 10月6日 | 10月7日 |
人數(shù)變化 (單位:萬人) | +1.6 | +0.8 | +0.4 | -0.4 | -0.8 | +0.2 | -1.2 |
(1)若月日的游客人數(shù)記為萬人,請用含的代數(shù)式表示月日的游客人數(shù),并直接寫出七天內(nèi)游客人數(shù)最多的是哪一天?
(2)若月日的游客人數(shù)為萬人,門票每人元,問黃金周期間該動物園門票總收入是多少萬元?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】觀察下表:
我們把表格中字母的和所得的多項式稱為"'特征多項式",例如:第1格的“特征多項式”為 4x+y,第 2 格的“特征多項式”為 8x+4y, 回答下列問題:
(1)第 3 格的“特征多項式”為 第 4 格的“待征多項式”為 , 第 n 格的“特征多項式”為 .
(2)若第 m 格的“特征多項式”與多項式-24x+2y-5 的和不含有 x 項,求此“特征多項式”.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在平面直角坐標系中,O為坐標原點,△ABC的邊BC在x軸上,A,C兩點的坐標分別為A(0,m),C(n,0),B(﹣5,0),且(n﹣3)2+ =0.一動點P從點B出發(fā),以每秒2單位長度的速度沿射線BO勻速運動,設(shè)點P運動的時間為ts.
(1)求A,C兩點的坐標;
(2)連接PA,若△PAB為等腰三角形,求點P的坐標;
(3)當點P在線段BO上運動時,在y軸上是否存在點Q,使△POQ與△AOC全等?若存在,請求出t的值并直接寫出點Q的坐標;若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在平面直角坐標系中,二次函數(shù)的圖象與x軸交于A、B兩點,B點的坐標為(3,0),與y軸交于點C(0,-3),點P是直線BC下方拋物線上的一個動點.
(1)求二次函數(shù)解析式;
(2)連接PO,PC,并將△POC沿y軸對折,得到四邊形.是否存在點P,使四邊形為菱形?若存在,求出此時點P的坐標;若不存在,請說明理由;
(3)當點P運動到什么位置時,四邊形ABPC的面積最大?求出此時P點的坐標和四邊形ABPC的最大面積.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,AB是⊙O的直徑,弦CD⊥AB于H,過CD延長線上一點E作⊙O的切線交AB的延長線于切點為G,連接AG交CD于K.
(1)求證:KE=GE;
(2)若KG2=KDGE,試判斷AC與EF的位置關(guān)系,并說明理由;
(3)在(2)的條件下,若sinE=,AK=,求FG的長.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com