【題目】如圖,在平面直角坐標(biāo)系中,直線y=﹣5x+5與x軸、y軸分別交于A,C兩點(diǎn),拋物線y=x2+bx+c經(jīng)過A,C兩點(diǎn),與x軸交于另一點(diǎn)B.
(1)求拋物線解析式及B點(diǎn)坐標(biāo);
(2)x2+bx+c≥﹣5x+5的解集 .
(3)若點(diǎn)M在第一象限內(nèi)拋物線上一動(dòng)點(diǎn),連接MA、MB,當(dāng)點(diǎn)M運(yùn)動(dòng)到某一位置時(shí),△ABM面積為△ABC的面積的倍,求此時(shí)點(diǎn)M的坐標(biāo).
【答案】(1)點(diǎn)B(5,0);(2)x≤0或x≥1;(3)點(diǎn)M(3+2,4)或(3﹣2,4).
【解析】
(1)根據(jù)一次函數(shù)解析式求出點(diǎn)A、C的坐標(biāo),將點(diǎn)A、C的坐標(biāo)代入拋物線表達(dá)式,即可求出拋物線解析式,易得B點(diǎn)坐標(biāo);
(2)x2+bx+c≥5x+5表示拋物線在直線的上方,從圖象上分析函數(shù)交點(diǎn)情況,即可求解;
(3)由△ABM面積為△ABC的面積的倍得:×AB×|yM|=×AB×CO×,即可求解.
(1)直線y=﹣5x+5與x軸、y軸分別交于A,C兩點(diǎn),
當(dāng)x=0時(shí),y=5,當(dāng)y=0時(shí),x=1,
則點(diǎn)A、C的坐標(biāo)分別為:(1,0)、(0,5),
將點(diǎn)A、C的坐標(biāo)代入拋物線表達(dá)式得:,解得:,
故拋物線的表達(dá)式為:y=x2﹣6x+5,
令y=0,解得:x=1或5,
故點(diǎn)B(5,0);
(2)x2+bx+c≥﹣5x+5的解集從圖象看表示的是拋物線在直線的上方對應(yīng)的x的取值范圍,
∴解集是:x≤0或x≥1,
故答案為:x≤0或x≥1;
(3)設(shè)點(diǎn)M(x,x2﹣6x+5),
由△ABM面積為△ABC的面積的倍得:×AB×|yM|=×AB×CO×,
即:|x2﹣6x+5|=5×,
解得:x=3(不合題意的值已舍去),
故點(diǎn)M(3+2,4)或(3﹣2,4).
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知等腰Rt△ABC,∠ACB=90°,CA=CB,以BC為邊向外作等邊△CBA,連接AD,過點(diǎn)C作∠ACB的角平分線與AD交于點(diǎn)E,連接BE.
(1)若AE=2,求CE的長度;
(2)以AB為邊向下作△AFB,∠AFB=60°,連接FE,求證:FA+FB= FE.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】 某校為了解九年級(jí)男同學(xué)的體育考試準(zhǔn)備情況,隨機(jī)抽取部分男同學(xué)進(jìn)行了1000米跑測試.按照成績分為優(yōu)秀、良好、合格與不合格四個(gè)等級(jí).學(xué)校繪制了如下不完整的統(tǒng)計(jì)圖.
(1)根據(jù)給出的信息,補(bǔ)全兩幅統(tǒng)計(jì)圖;
(2)該校九年級(jí)有600名男生,請估計(jì)成績未達(dá)到良好有多少名?
(3)某班甲、乙兩位成績優(yōu)秀的同學(xué)被選中參加即將舉行的學(xué)校運(yùn)動(dòng)會(huì)1000米比賽,預(yù)賽分為A、B、C三組進(jìn)行,選手由抽簽確定分組.甲、乙兩人恰好分在同一組的概率是多少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,拋物線與x軸交于A(-1,0),B(5,0)兩點(diǎn),直線與y軸交于點(diǎn)C,與x軸交于點(diǎn)D。點(diǎn)P是x軸上方的拋物線上一動(dòng)點(diǎn),過點(diǎn)P作PF⊥x軸與點(diǎn)F,交直線CD于點(diǎn)E。設(shè)點(diǎn)P的橫坐標(biāo)為m。
(1)求拋物線的解析式;
(2)若PF=5EF,求m的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在4×4的網(wǎng)格中,每一個(gè)小方格都是邊長為1的小正方形,每個(gè)小正方形的頂點(diǎn)稱為格點(diǎn),以O為坐標(biāo)原點(diǎn)建立如圖所示的平面直角坐標(biāo)系.若拋物線y=x2+bx+c的圖象至少經(jīng)過圖中(4×4的網(wǎng)格中)的三個(gè)格點(diǎn),并且至少一個(gè)格點(diǎn)在x軸上,則符合要求的拋物線一定不經(jīng)過的格點(diǎn)坐標(biāo)為( )
A.(1,3)B.(2,3)C.(1,4)D.(2,4)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】解方程
(1)(2x-1)2=25;
(2)x2-4x-1=0;
(3)3x(x-2)=2(2-x);
(4)x2-8x+12=0;
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,可以自由轉(zhuǎn)動(dòng)的轉(zhuǎn)盤被它的兩條直徑分成了四個(gè)分別標(biāo)有數(shù)字的扇形區(qū)域,其中標(biāo)有數(shù)字“1”的扇形圓心角為120°.轉(zhuǎn)動(dòng)轉(zhuǎn)盤,待轉(zhuǎn)盤自動(dòng)停止后,指針指向一個(gè)扇形的內(nèi)部,則該扇形內(nèi)的數(shù)字即為轉(zhuǎn)出的數(shù)字,此時(shí),稱為轉(zhuǎn)動(dòng)轉(zhuǎn)盤一次(若指針指向兩個(gè)扇形的交線,則不計(jì)轉(zhuǎn)動(dòng)的次數(shù),重新轉(zhuǎn)動(dòng)轉(zhuǎn)盤,直到指針指向一個(gè)扇形的內(nèi)部為止)
(1)轉(zhuǎn)動(dòng)轉(zhuǎn)盤一次,求轉(zhuǎn)出的數(shù)字是-2的概率;
(2)轉(zhuǎn)動(dòng)轉(zhuǎn)盤兩次,用樹狀圖或列表法求這兩次分別轉(zhuǎn)出的數(shù)字之積為正數(shù)的概率.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,拋物線的圖象與x軸交于A(﹣1.0),B(3,0)兩點(diǎn),與y軸交于點(diǎn)C(0,﹣3),頂點(diǎn)為D.
(1)求此拋物線的解析式.
(2)求此拋物線頂點(diǎn)D的坐標(biāo)和對稱軸.
(3)探究對稱軸上是否存在一點(diǎn)P,使得以點(diǎn)P、D、A為頂點(diǎn)的三角形是等腰三角形?若存在,請求出所有符合條件的P點(diǎn)的坐標(biāo),若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知AB∥EF∥CD,AD與BC相交于點(diǎn)O.
(1)如果CE=3,EB=9,DF=2,求AD的長;
(2)如果BO:OE:EC=2:4:3,AB=3,求CD的長.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com