【題目】在等腰中,,,點,點分別是軸,軸上兩個動點,直角邊交軸于點,斜邊交軸于點.
(1)如圖①,當等腰運動到使點恰為中點時,連接,求證:;
(2)如圖②,當等腰運動到使時,點的橫坐標為,.在軸上是否存在點,使為等腰三角形?若存在,請直接寫出點的坐標;若不存在,說明理由.
【答案】(1)證明見解析;(2)存在,P點的坐標為或或或.
【解析】
(1)過點C作CG⊥AC交y軸于點G,則△ACG≌△ABD(ASA),即得CG=AD=CD,∠ADB=∠AGC,由∠DCE=∠GCE=45°,可證△DCE≌△GCE(SAS)得∠CDE=∠AGC,從而得到結論;
(2)根據含30°的直角三角形的特點解直角三角形,分別求出OA和AB,然后設P(a,0)分情況討論即可.
解:(1)證明:如圖,過點C作CG⊥AC交y軸于點G,
∵D為AC的中點,
∴AD=CD,
∵AC=AB,,
∴∠ACB=∠ABC=45°,
∵CG⊥AC ,
∴∠ACG=90°,∠CAG+∠AGC=90°,
∵∠AOD=90°,
∴∠ADO+∠DAO=90°,
∴∠AGC=∠ADO,
在△ACG和△ABD中,
∴△ACG≌△ABD(AAS),
∴CG=AD=CD,∠ADB=∠AGC,
∵∠ACB=45°,∠ACG=90°,
∴∠DCE=∠GCE=45°,
在△DCE和△GCE中,
∴△DCE≌△GCE(SAS),
∴∠CDE=∠AGC,
∴∠ADB=∠CDE;
(2)存在,
∵,,
∴,即,
∴在Rt△AOB中根據勾股定理,
即,
解得OA=3,AB=2OA=6,
∴,
設P(a,0),則,
①若AP=BP,則AP2=BP2,即
,解得
∴,
②若AP=AB,則AP2=AB2,即
,解得或(舍去),
∴,
③若AB=AB,則AB2=AB2,即
,
解得或,
∴或,
綜上所述P點的坐標為或或或.
科目:初中數學 來源: 題型:
【題目】奉節(jié)臍橙是重慶市奉節(jié)縣特產,中國地理標志產品,眼下,正值奉節(jié)臍橙銷售旺季,某商家看準商機,第一次用4800元購進一批奉節(jié)臍橙,銷售良好,于是第二次又用12000元購進一批奉節(jié)臍橙,但此時進價比第一次漲了2元,所購進的數量恰好是第一次購進數量的兩倍.
(1)求第一次購進奉節(jié)臍橙的進價.
(2)實際銷售中,兩次售價均相同,在銷售過程中,由于消費者挑選后,果品下降,第一批奉節(jié)臍橙的最后100千克八折售出,第二批奉節(jié)臍橙的最后800千克九折售出,若售完這兩批奉節(jié)臍橙的獲利不低于9400元,則售價至少為多少元?
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】已知一次函數y=kx+b的圖象經過點A(—1,—5),且與正比例函數的圖象相交于點B(2,a).
(1)求a的值;
(2)求一次函數y=kx+b的表達式;
(3)在同一坐標系中,畫出這兩個函數的圖象,并求這兩條直線與y軸圍成的三角形的面積.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如果一個正整數能表示成兩個連續(xù)偶數的平方差,那么稱這個正整數為“巧數”,如:,,,因此4,12,20這三個數都是“巧數”.
(1)400和2020這兩個數是“巧數”嗎?為什么?
(2)設兩個連續(xù)偶數為和(其中取正整數),由這兩個連續(xù)偶數構造的“巧數”是4的倍數嗎?為什么?
(3)求介于50到101之間所有“巧數”之和.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】萬圣節(jié)兩周前,某商店購進1000個萬圣節(jié)面具,進價為每個6元,第一周以每個10元的價格售出200個;隨著萬圣節(jié)的臨近,預計第二周若按每個10元的價格銷售可售出400個,但商店為了盡快減少庫存,決定單價降價x元銷售根據市場調查,單價每降低1元,可多售出100個,但售價不得低于進價;節(jié)后,商店對剩余面具清倉處理,以第一周售價的四折全部售出.
當單價降低2元時,計算第二周的銷售量和售完這批面具的總利潤;
如果銷售完這批面具共獲利1300元,問第二周每個面具的銷售價格為多少元?
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】已知關于的一元二次方程x2-4x+k+1=0
(1)若=-1是方程的一個根,求k值和方程的另一根;
(2)設x1,x2是關于x的方程x2-4x+k+1=0的兩個實數根,是否存在實數k,使得x1x2>x1+x2成立?請說明理由.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖所示,△ABC中,AB=BC,DE⊥AB于點E,DF⊥BC于點D,交AC于F.
⑴若∠AFD=155°,求∠EDF的度數;
⑵若點F是AC的中點,求證:∠CFD=∠B.
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com