【題目】如圖,是⊙的直徑,是弦,,.

(1)求證:是⊙的切線:

(2),求的值.

【答案】(1)詳見(jiàn)解析;(2)

【解析】

(1)過(guò)OOEACACE,通過(guò),得到∠ACD=COE,最后可得∠DCO=90°;

(2)(1)易知∠OAC=CAD,所以只需在RtADC中求出cosCAD即可.

(1)證明: 過(guò)OOEACACE,如圖所示:

OA=OC,OEAC

∴∠ACD=COE

∵∠ACO+COE=90°

∴∠ACO+ACD=90°=OCD

CD為圓O的切線.

(2)解:由(1)知:∠ACO+ACD=90°

ADCD

∴∠ACD+CAD=90°

∴∠CAD=OCA=OAC

過(guò)AAFOC,如圖示:

AB=10

OA=5

AD=2

OF=3

AF==CD

AC=

cosDAC==cosOAC

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在矩形ABCD中,,,對(duì)角線AC,BD交于點(diǎn)點(diǎn)P從點(diǎn)A出發(fā),沿AD方向勻速運(yùn)動(dòng),速度為;同時(shí),點(diǎn)Q從點(diǎn)D出發(fā),沿DC方向勻速運(yùn)動(dòng),速度為;當(dāng)一個(gè)點(diǎn)停止運(yùn)動(dòng)時(shí),另一個(gè)點(diǎn)也停止運(yùn)動(dòng)連接PO并延長(zhǎng),交BC于點(diǎn)E,過(guò)點(diǎn)Q,交BD于點(diǎn)設(shè)運(yùn)動(dòng)時(shí)間為,解答下列問(wèn)題:

1)當(dāng)t為何值時(shí),是等腰三角形;

2)設(shè)五邊形OECQF的面積為,試確定St的函數(shù)關(guān)系式.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某校為了解學(xué)生對(duì)第二十屆中國(guó)哈爾濱冰雪大世界主題景觀的了解情況,在全體學(xué)生中隨機(jī)抽取了部分學(xué)生進(jìn)行調(diào)查,并把調(diào)查結(jié)果繪制成如圖的不完整的兩幅統(tǒng)計(jì)圖:

(1)本次調(diào)查共抽取了多少名學(xué)生;

(2)通過(guò)計(jì)算補(bǔ)全條形圖;

(3)若該學(xué)校共有名學(xué)生,請(qǐng)你估計(jì)該學(xué)校選擇比較了解項(xiàng)目的學(xué)生有多少名?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】有下列四個(gè)條件:①AB=BC,②∠ABC=90,③AC=BD,④ACBD.從中選取兩個(gè)作為補(bǔ)充條件,使BCD為正方形(如圖).現(xiàn)有下列四種選法,其中錯(cuò)誤的是 ( )

A. ②③ B. ②④ C. ①② D. ①③

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在ABC中,AB=AC,以AB為直徑的⊙O分別與BC、AC交于點(diǎn)D、E,過(guò)點(diǎn)DDFAC于點(diǎn)F.

(1)若⊙O的半徑為3,CDF=15°,求陰影部分的面積;

(2)求證:DF是⊙O的切線;

(3)求證:∠EDF=DAC.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某校同學(xué)組織了一次經(jīng)典朗讀比賽,甲、乙兩隊(duì)各10人的比賽成績(jī)?nèi)缦卤恚?/span>10分制):

1)甲隊(duì)成績(jī)的中位數(shù)是 分,乙隊(duì)成績(jī)的眾數(shù)是 分;

2)計(jì)算乙隊(duì)的平均成績(jī)和方差;

3)已知甲隊(duì)成績(jī)的方差是2,則成績(jī)較為整齊的是 隊(duì).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖①,二次函數(shù)的圖像與軸交于兩點(diǎn)(點(diǎn)的左側(cè)),頂點(diǎn)為,連接并延長(zhǎng)交軸于點(diǎn),若.

1)求二次函數(shù)的表達(dá)式;

2)在軸上方有一點(diǎn),,且,連接并延長(zhǎng)交拋物線于點(diǎn),求點(diǎn)的坐標(biāo);

3)如圖②,折疊△,使點(diǎn)落在線段上的點(diǎn)處,折痕為.若△ 有一條邊與軸垂直,直接寫(xiě)出此時(shí)點(diǎn)的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】.如圖,⊙OABC的外接圓,直線DE是⊙O的切線,點(diǎn)A為切點(diǎn),DEBC;

1)如圖1.求證:AB=AC;

2)如圖2.點(diǎn)P是弧AB上一動(dòng)點(diǎn),連接PA、PB,作PFPB,垂足為點(diǎn)P,PF交⊙O于點(diǎn)F, 求證:∠BAC=2APF;

3)如圖3.在(2)的條件下,連接PC,PA=,PB=PC=,求線段PF的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】6分)如圖,△ABC三個(gè)頂點(diǎn)的坐標(biāo)分別為A24),B1,1),C4,3).

1)請(qǐng)畫(huà)出△ABC關(guān)于x軸對(duì)稱的△A1B1C1,并寫(xiě)出點(diǎn)A1的坐標(biāo);

2)請(qǐng)畫(huà)出△ABC繞點(diǎn)B逆時(shí)針旋轉(zhuǎn)90°后的△A2BC2;

3)求出(2)中C點(diǎn)旋轉(zhuǎn)到C2點(diǎn)所經(jīng)過(guò)的路徑長(zhǎng)(記過(guò)保留根號(hào)和π).

查看答案和解析>>

同步練習(xí)冊(cè)答案