【題目】如圖,已知△ABC的三個(gè)頂點(diǎn)的坐標(biāo)分別為A(﹣5,3)、B(﹣2,﹣2)、C(﹣3,4).
(1)作出△ABC關(guān)于y軸對(duì)稱(chēng)的△A1B1C1;
(2)寫(xiě)出點(diǎn)A關(guān)于x軸對(duì)稱(chēng)的點(diǎn)A2的坐標(biāo);
(3)△ABC的面積為 .
【答案】
(1)解:如圖所示:△A1B1C1,即為所求
(2)(﹣5,﹣3)
(3)6.5
【解析】解:(2)如圖所示:點(diǎn)A關(guān)于x軸對(duì)稱(chēng)的點(diǎn)A2的坐標(biāo)為:(﹣5,﹣3);
所以答案是:(﹣5,﹣3);(3)△ABC的面積為:3×6﹣ ×1×2﹣ ×3×5﹣ ×1×6=6.5.
所以答案是:6.5.
【考點(diǎn)精析】解答此題的關(guān)鍵在于理解作軸對(duì)稱(chēng)圖形的相關(guān)知識(shí),掌握畫(huà)對(duì)稱(chēng)軸圖形的方法:①標(biāo)出關(guān)鍵點(diǎn)②數(shù)方格,標(biāo)出對(duì)稱(chēng)點(diǎn)③依次連線.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,OA,OB是⊙O的兩條半徑,OA⊥OB,C是半徑OB上一動(dòng)點(diǎn),連結(jié)AC并延長(zhǎng)交⊙O于D,過(guò)點(diǎn)D作圓的切線交OB的延長(zhǎng)線于E,已知OA=8.
(1)求證:∠ECD=∠EDC;
(2)若tanA=,求DE長(zhǎng);
(3)當(dāng)∠A從15°增大到30°的過(guò)程中,求弦AD在圓內(nèi)掃過(guò)的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】下列計(jì)算中正確的是( 。
A. (a+b)2=a2+b2B. a2a3=a5C. a8÷a2=a2D. a2+a3=a5
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在四邊形ABCD中,∠A,∠B,∠C,∠D度數(shù)之比為1:2:3:3,則∠B的度數(shù)為( )
A. 30° B. 40° C. 80° D. 120°
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】對(duì)于命題“已知:a∥b,b∥c,求證:a∥c”.如果用反證法,應(yīng)先假設(shè)( )
A. a不平行b B. b不平行c C. a⊥c D. a不平行c
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在中,AB=AC,以AC邊為直徑作⊙O交BC邊于點(diǎn)D,過(guò)點(diǎn)D作于點(diǎn)E,ED、AC的延長(zhǎng)線交于點(diǎn)F.
(1)求證:EF是⊙O的切線;
(2)若且,求⊙O的半徑與線段AE的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】計(jì)算
(1)(﹣10)+(+7)
(2)12﹣(﹣18)+(﹣7)﹣15
(3)5.6+(﹣0. 9)+4.4+(﹣8.1)+(﹣0.1)
(4)|﹣22+(﹣3)2|﹣(﹣)3
(5)2×(﹣3)2﹣33﹣6÷(﹣2)
(6)﹣81÷×(﹣)
(7)+(﹣)﹣(﹣)+(﹣)﹣(+)
(8)(﹣1)2008+(﹣5)×[(﹣2)3+2]﹣(﹣4)2÷(﹣)
(9)﹣32×(﹣)2+(﹣+)×(﹣24).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知等腰三角形的周長(zhǎng)為24,底邊長(zhǎng)y關(guān)于腰長(zhǎng)x的函數(shù)表達(dá)式(不寫(xiě)出x的取值范圍) 是________.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com