【題目】已知線段AB=10cm,點C是直線AB上一點,BC=4cm,若M是AC的中點, N是BC的中點,則線段MN的長度是:( )
A.7cm
B.5cm或3cm
C.7cm或3cm
D.5cm

【答案】D
【解析】分類討論:(1)當點C在線段AB上時,則
(2)當點C在線段AB的延長線上時,則
綜合上述情況,線段MN的長度是5cm.
故C符合題意.
所以答案是:D.


【考點精析】關于本題考查的兩點間的距離和線段長短的計量,需要了解同軸兩點求距離,大減小數(shù)就為之.與軸等距兩個點,間距求法亦如此.平面任意兩個點,橫縱標差先求值.差方相加開平方,距離公式要牢記;度量法:即用一把刻度量出兩條線段的長度再比較;疊合法:從“形”的角度比較,觀察點的位置才能得出正確答案.

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,將矩形ABCD沿BD對折,點A落在E處,BE與CD相交于F,若AD=3,BD=6.
(1)求證:△EDF≌△CBF;
(2)求∠EBC.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在平面直角坐標系xoy中,A(1,2),B(3,1),C(﹣2,﹣1).
(1)在圖中作出△ABC關于y軸的對稱圖形△A1B1C1
(2)寫出點A1 , B1 , C1的坐標(直接寫答案). A1
B1
C1

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】函數(shù)y=x2-2x+3的圖象的頂點坐標是 (  )

A.(1-4)B.(-1,2)C.(1,2)D.(0,3)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某職業(yè)高中機電班共有學生42人,其中男生人數(shù)比女生人數(shù)的2倍少3人.

(1)該班男生和女生各有多少人?

(2)某工廠決定到該班招錄30名學生,經(jīng)測試,該班男、女生每天能加工的零件數(shù)分別為50個和45個,為保證他們每天加工的零件總數(shù)不少于1460個,那么至少要招錄多少名男學生?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知:如圖,△ABC和△DBE均為等腰直角三角形.
(1)求證:AD=CE;
(2)猜想:AD和CE是否垂直?若垂直,請說明理由;若不垂直,則只要寫出結論,不用寫理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】正方形的邊長為2,建立合適的直角坐標系,寫出各個頂點的坐標.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知x﹣y=7,xy=2,則x2+y2的值為( 。

A.53
B.45
C.47
D.51

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知MAN=135°,正方形ABCD繞點A旋轉.

(1)當正方形ABCD旋轉到MAN的外部(頂點A除外)時,AM,AN分別與正方形ABCD的邊CB,CD的延長線交于點M,N,連接MN.

如圖1,若BM=DN,則線段MN與BM+DN之間的數(shù)量關系是 ;

如圖2,若BM≠DN,請判斷中的數(shù)量關系是否仍成立?若成立,請給予證明;若不成立,請說明理由;

(2)如圖3,當正方形ABCD旋轉到MAN的內部(頂點A除外)時,AM,AN分別與直線BD交于點M,N,探究:以線段BM,MN,DN的長度為三邊長的三角形是何種三角形,并說明理由.

查看答案和解析>>

同步練習冊答案