如圖,已知平行四邊形ABCD的對角線相交于O點,延長BD分別至E、F點,使得BE=DF,
求證:
(1)AF=CE;
(2)四邊形AECF是平行四邊形.

【答案】分析:(1)根據(jù)已知條件,要證明AF=CE,放到所在的兩個三角形中,運用全等證明可以或運用平行四邊形的性質,證明四邊形AFCE是平行四邊形也可.
(2)根據(jù)平行四邊形的判定方法可以有不同的思路:一組對邊平行且相等的四邊形是平行四邊形或對角線互相平分的四邊形是平行四邊形.
解答:解:(1)證明:∵四邊形ABCD是平行四邊形,
∴OA=OC,OB=OD.
又∵BE=DF,
∴OB+BE=OD+DF,即OE=OF,
∴四邊形AECF是平行四邊形.(對角線互相平分的四邊形是平行四邊形)
∴AF=CE.(平行四邊形的對邊相等)

(2)由(1)可知,四邊形AECF是平行四邊形.
點評:本題考查了平行四邊形的判定與性質,熟練掌握性質定理和判定定理是解題的關鍵.平行四邊形的五種判定方法與平行四邊形的性質相呼應,每種方法都對應著一種性質,在應用時應注意它們的區(qū)別與聯(lián)系.
練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

如圖,已知平行四邊形DEFG與正方形ABCD有一個公共頂點D,G在CB或其延長線上,A在EF所在直線上,又二次函數(shù)y=(m-1)x2-(m-2)x-1(m>0)與x軸的兩個交點P、Q的橫坐標分別為x1,x2,且x1>0,x2>0,正方形AB精英家教網(wǎng)CD的邊長a等于點P,Q間的距離.
(1)求m的取值范圍;
(2)求a和四邊形DEFG的面積S;
(3)若DEFG的一組鄰邊長分別等于x1,x2,并設
CGCB
=k
,求sin∠E和k.
((2),(3)的結果都用含m的代數(shù)式表示)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

精英家教網(wǎng)如圖,已知平行四邊形ABCD的對角線AC,BD相交于點O,BD繞點O順時針旋轉交AB,DC于E,F(xiàn).
(1)證明:四邊形BFDE是平行四邊形;
(2)BD繞點O順時針旋轉
 
度時,平行四邊形BFDE為菱形?請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖,已知平行四邊形ABCD中,P是對角線BD上的一點,過P點作MN∥AD,EF∥CD,分別精英家教網(wǎng)交AB、CD、AD、BC于M、N、E、F,設a=PM•PE,b=PN•PF.
(1)請判斷a與b的大小關系,并說明理由;
(2)當
BP
PD
=2
時,求
S平行四邊形PEAM
S△ABD
的值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

23、如圖,已知平行四邊形ABCD.
(1)用直尺和圓規(guī)作出么ABC的平分線BE,交AD的延長線于點E,交DC于點F(保留作圖痕跡,不寫作法);
(2)求證:△ABE是等腰三角形;
(3)在(1)中所得圖形中,除△ABE外,請你寫出其他的等腰三角形.(不要求證明)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖,已知平行四邊形ABCD,作DE⊥AB,垂足為E,把三角形AED沿AB方向平移AB長個單位長度.
(1)作出平移后的圖形;
(2)經(jīng)過這樣的平移后,原來的圖形變成了什么圖形?
(3)這兩個圖形的面積相等嗎?只需給出答案,不必說明理由.

查看答案和解析>>

同步練習冊答案