(本題滿分11分)如圖1,已知矩形ABCD的頂點(diǎn)A與點(diǎn)O重合,AD、AB分別在x軸、y軸上,且AD=2,AB=3;拋物線經(jīng)過坐標(biāo)原點(diǎn)O和x軸上另一點(diǎn)E(4,0)
(1)當(dāng)x取何值時(shí),該拋物線的最大值是多少?
(2)將矩形ABCD以每秒1個(gè)單位長(zhǎng)度的速度從圖1所示的位置沿x軸的正方向勻速平行移動(dòng),同時(shí)一動(dòng)點(diǎn)P也以相同的速度從點(diǎn)A出發(fā)向B勻速移動(dòng).設(shè)它們運(yùn)動(dòng)的時(shí)間為t秒(0≤t≤3),直線AB與該拋物線的交點(diǎn)為N(如圖2所示).
① 當(dāng)時(shí),判斷點(diǎn)P是否在直線ME上,并說明理由;
② 以P、N、C、D為頂點(diǎn)的多邊形面積是否可能為5,若有可能,求出此時(shí)N點(diǎn)的坐標(biāo);若無可能,請(qǐng)說明理由.

(1)4
(2)可能為5,理由略。解析:

(本題滿分11分)
解:(1)因拋物線經(jīng)過坐標(biāo)原點(diǎn)O(0,0)和點(diǎn)E(4,0)
故可得c=0,b=4
所以拋物線的解析式為…………………………………………1分
Q
得當(dāng)x=2時(shí),該拋物線的最大值是4. …………………………………………2分
(2)① 點(diǎn)P不在直線ME上.                             
已知M點(diǎn)的坐標(biāo)為(2,4),E點(diǎn)的坐標(biāo)為(4,0),
設(shè)直線ME的關(guān)系式為y=kx+b.
于是得 ,解得
所以直線ME的關(guān)系式為y="-2x+8." …………………………………………3分
由已知條件易得,當(dāng)時(shí),OA=AP=,…………………4分
∵ P點(diǎn)的坐標(biāo)不滿足直線ME的關(guān)系式y(tǒng)="-2x+8.      "
∴ 當(dāng)時(shí),點(diǎn)P不在直線ME上. ……………………………………5分
②以P、N、C、D為頂點(diǎn)的多邊形面積可能為5
∵ 點(diǎn)A在x軸的非負(fù)半軸上,且N在拋物線上,
∴ OA=AP=t.
∴ 點(diǎn)P,N的坐標(biāo)分別為(t,t)、(t,-t 2+4t) …………………………………6分
∴ AN=-t 2+4t (0≤t≤3) ,
∴ AN-AP=(-t 2+4 t)- t=-t2+3 t=t(3-t)≥0 ,    ∴ PN=-t 2+3 t  
…………………………………………………………………………………7分
(ⅰ)當(dāng)PN=0,即t=0或t=3時(shí),以點(diǎn)P,N,C,D為頂點(diǎn)的多邊形是三角形,此三角形的高為AD,∴ S=DC·AD=×3×2=3.
(ⅱ)當(dāng)PN≠0時(shí),以點(diǎn)P,N,C,D為頂點(diǎn)的多邊形是四邊形
∵ PN∥CD,AD⊥CD,
∴ S=(CD+PN)·AD=[3+(-t 2+3 t)]×2=-t 2+3 t+3…………………8分
當(dāng)-t 2+3 t+3=5時(shí),解得t=1、2…………………………………………………9分
而1、2都在0≤t≤3范圍內(nèi),故以P、N、C、D為頂點(diǎn)的多邊形面積為5
綜上所述,當(dāng)t=1、2時(shí),以點(diǎn)P,N,C,D為頂點(diǎn)的多邊形面積為5,
當(dāng)t=1時(shí),此時(shí)N點(diǎn)的坐標(biāo)(1,3)………………………………………10分
當(dāng)t=2時(shí),此時(shí)N點(diǎn)的坐標(biāo)(2,4)………………………………………11分
說明:(ⅱ)中的關(guān)系式,當(dāng)t=0和t=3時(shí)也適合.(故在閱卷時(shí)沒有(。挥校áⅲ┮部梢,不扣分)
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

(本題滿分11分)如圖,在梯形ABCD中,AD∥BC,BC=2AD,點(diǎn)F、G分別是邊BC、CD的中點(diǎn),連接AF、FG,過點(diǎn)D作DE∥FG交AF于點(diǎn)E。

(1)求證:△AED≌△CGF;

(2)若梯形ABCD為直角梯形,∠B=90°,判斷四邊形DEFG是什么特殊四邊形?并證明你的結(jié)論;

(3)若梯形ABCD的面積為a(平方單位),則四邊形DEFG的面積為       (平方單位)。(只寫結(jié)果,不必說理)

 

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(本題滿分11分)
如圖所示,⊙的直徑,是它的兩條切線,為射線上的動(dòng)點(diǎn)(不與重合),切⊙,交,設(shè)

(1)求的函數(shù)關(guān)系式;
(2)若⊙與⊙外切,且⊙分別與
相切于點(diǎn),求為何值時(shí)⊙半徑為1.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2011-2012學(xué)年廣西省貴港市九年級(jí)第一次教學(xué)質(zhì)量監(jiān)測(cè)數(shù)學(xué)卷 題型:解答題

(本題滿分11分)

如圖所示,⊙的直徑,是它的兩條切線,為射線上的動(dòng)點(diǎn)(不與重合),切⊙,交,設(shè)

(1)求的函數(shù)關(guān)系式;

(2)若⊙與⊙外切,且⊙分別與

相切于點(diǎn),求為何值時(shí)⊙半徑為1.

 

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2011-2012年江蘇省九年級(jí)上學(xué)期期中考試數(shù)學(xué)卷 題型:解答題

(本題滿分11分)如圖,在直角梯形ABCD中,AD∥BC,∠C=90°,BC=16,DC=12,AD=21。動(dòng)點(diǎn)P從點(diǎn)D出發(fā),沿射線DA的方向以每秒2兩個(gè)單位長(zhǎng)的速度運(yùn)動(dòng),動(dòng)點(diǎn)Q從點(diǎn)C出發(fā),在線段CB上以每秒1個(gè)單位長(zhǎng)的速度向點(diǎn)B運(yùn)動(dòng),點(diǎn)P,Q分別從點(diǎn)D,C同時(shí)出發(fā),當(dāng)點(diǎn)Q運(yùn)動(dòng)到點(diǎn)B時(shí),點(diǎn)P隨之停止運(yùn)動(dòng)。設(shè)運(yùn)動(dòng)的時(shí)間為t(秒).

1.(1)設(shè)△BPQ的面積為S,求S與t之間的函數(shù)關(guān)系式

2.(2)當(dāng)線段PQ與線段AB相交于點(diǎn)O,且2AO=OB時(shí),求t的值.

3.(3)當(dāng)t為何值時(shí),以B,P,Q三點(diǎn)為頂點(diǎn)的三角形是等腰三角形?

4.(4)是否存在時(shí)刻t,使得PQ⊥BD?若存在,求出t的值;若不存在,請(qǐng)說明理由.

 

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2010-2011年山東省德州九年級(jí)第一學(xué)期期末質(zhì)量檢測(cè)數(shù)學(xué)卷 題型:解答題

.(本題滿分11分)

如圖,在正方形ABCD內(nèi),已知兩個(gè)動(dòng)圓⊙O1與⊙Q2互相外切.且⊙O1與邊AB,AD相切,⊙O2與邊BC,CD相切,若正方形的邊長(zhǎng)為1,⊙O1與⊙Q2的半徑分別為,

1.(1)求的關(guān)系式;

2.(2)求⊙O1與⊙Q2的面積之和的最小值.

 

查看答案和解析>>

同步練習(xí)冊(cè)答案