閱讀下列材料解決問(wèn)題:
將下圖一個(gè)正方形和三個(gè)長(zhǎng)方形拼成一個(gè)大長(zhǎng)方形,觀察這四個(gè)圖形的面積與拼成的大長(zhǎng)方形的面積之間的關(guān)系.

∵用間接法表示大長(zhǎng)方形的面積為:x2+px+qx+pq,用直接法表示面積為:(x+p)(x+q)
∴x2+px+qx+pq=(x+p)(x+q)
∴我們得到了可以進(jìn)行因式分解的公式:x2+(p+q )x+pq=(x+p)(x+q)
(1)運(yùn)用公式將下列多項(xiàng)式分解因式:
①x2+4x-5              ②y2-7y+12
(2)如果二次三項(xiàng)式“a2+□ab+□b2”中的“□”只能填入有理數(shù)1、2、3、4,并且填入后的二次三項(xiàng)式能進(jìn)行因式分解,請(qǐng)你寫(xiě)出所有的二次三項(xiàng)式.
分析:(1)根據(jù)閱讀材料中的結(jié)論分解即可;
(2)找出能用公式法及十字相乘法分解的多項(xiàng)式即可.
解答:解:(1)①x2+4x-5=(x+5)(x-1);
②y2-7y+12=(y-3)(y-4);

(2)a2+2ab+b2;a2+3ab+2b2;a2+4ab+3b2;a2+4ab+4b2
點(diǎn)評(píng):此題考查了因式分解的應(yīng)用,熟練掌握因式分解的方法是解本題的關(guān)鍵.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:閱讀理解

請(qǐng)閱讀下列材料:
問(wèn)題:如圖1,在等邊三角形ABC內(nèi)有一點(diǎn)P,且PA=2,PB=
3
,PC=1、求∠BPC度數(shù)的大小和等邊三角形ABC的邊長(zhǎng).?
李明同學(xué)的思路是:將△BPC繞點(diǎn)B順時(shí)針旋轉(zhuǎn)60°,畫(huà)出旋轉(zhuǎn)后的圖形(如圖2),連接PP′,可得△P′PC是等邊三角形,而△PP′A又是直角三角形(由勾股定理的逆定理可證),所以∠AP′B=150°,而∠BPC=∠AP′B=150°,進(jìn)而求出等邊△ABC的邊長(zhǎng)為
7
,問(wèn)題得到解決.
請(qǐng)你參考李明同學(xué)的思路,探究并解決下列問(wèn)題:如圖3,在正方形ABCD內(nèi)有一點(diǎn)P,且PA=
5
,BP=
2
,PC=1.求∠BPC度數(shù)的大小和正方形ABCD的邊長(zhǎng).?
精英家教網(wǎng)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:閱讀理解

25、請(qǐng)閱讀下列材料:
問(wèn)題:如圖,在正方形ABCD和平行四邊形BEFG中,點(diǎn)A,B,E在同一條直線上,P是線段DF的中點(diǎn),連接PG,PC.
探究:當(dāng)PG與PC的夾角為多少度時(shí),平行四邊形BEFG是正方形?
小聰同學(xué)的思路是:首先可以說(shuō)明四邊形BEFG是矩形;然后延長(zhǎng)GP交DC于點(diǎn)H,構(gòu)造全等三角形,經(jīng)過(guò)推理可以探索出問(wèn)題的答案.
請(qǐng)你參考小聰同學(xué)的思路,探究并解決這個(gè)問(wèn)題.
(1)求證:四邊形BEFG是矩形;
(2)PG與PC的夾角為
90
度時(shí),四邊形BEFG是正方形.
理由:

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:閱讀理解

(2013•燕山區(qū)一模)閱讀下列材料:
問(wèn)題:如圖(1),已知正方形ABCD中,E、F分別是BC、CD邊上的點(diǎn),且∠EAF=45°. 判斷線段BE、EF、FD之間的數(shù)量關(guān)系,并說(shuō)明理由.

小明同學(xué)的想法是:已知條件比較分散,可以通過(guò)旋轉(zhuǎn)變換將分散的已知條件集中在一起,于是他將△DAF繞點(diǎn)A順時(shí)針旋轉(zhuǎn)90°,得到△BAH,然后通過(guò)證明三角形全等可得出結(jié)論.
請(qǐng)你參考小明同學(xué)的思路,解決下列問(wèn)題:
(1)圖(1)中線段BE、EF、FD之間的數(shù)量關(guān)系是
EF=BE+DF
EF=BE+DF
;
(2)如圖(2),已知正方形ABCD邊長(zhǎng)為5,E、F分別是BC、CD邊上的點(diǎn),且∠EAF=45°,AG⊥EF于點(diǎn)G,則AG的長(zhǎng)為
5
5
,△EFC的周長(zhǎng)為
10
10
;
(3)如圖(3),已知△AEF中,∠EAF=45°,AG⊥EF于點(diǎn)G,且EG=2,GF=3,則△AEF的面積為
15
15

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:閱讀理解

請(qǐng)閱讀下列材料?:
問(wèn)題:如圖1,在等邊三角形ABC內(nèi)有一點(diǎn)P,且PA=2,PB=
3
,PC=1.求∠BPC度數(shù)的大小和等邊三角形ABC的邊長(zhǎng).
李明同學(xué)的思路是:將△BPC繞點(diǎn)B順時(shí)針旋轉(zhuǎn)60°,畫(huà)出旋轉(zhuǎn)后的圖形(如圖2).連接PP′,可得△P′PB是等邊三角形(可證),而△PP′A又是直角三角形(由勾股定理的逆定理可證).所以∠AP′B=150°,而∠BPC=∠AP′B=150°.進(jìn)而把AB放在Rt△APB(可證得)中,用勾股定理求出等邊△ABC的邊長(zhǎng)為
7
.問(wèn)題得到解決.?
[思路分析]首先仔細(xì)閱讀材料,問(wèn)題中小明的做法總結(jié)起來(lái)就是通過(guò)旋轉(zhuǎn)固定的角度將已知條件放在同一個(gè)(組)圖形中進(jìn)行研究.旋轉(zhuǎn)60度以后BP就成了BP′,PC成了P′A,借助等量關(guān)系BP′=PP′,于是△APP′就可以計(jì)算了.
解決問(wèn)題:
請(qǐng)你參考李明同學(xué)旋轉(zhuǎn)的思路,探究并解決下列問(wèn)題:
如圖3,在正方形ABCD內(nèi)有一點(diǎn)P,且PA=
5
,BP=
2
,PC=1.求∠BPC度數(shù)的大小和正方形ABCD的邊長(zhǎng).

查看答案和解析>>

同步練習(xí)冊(cè)答案