【題目】某商店銷售甲、乙兩種商品,現(xiàn)有如下信息: 請結(jié)合以上信息,解答下列問題:
(1)求甲、乙兩種商品的進(jìn)貨單價(jià);
(2)已知甲、乙兩種商品的零售單價(jià)分別為2元、3元,該商店平均每天賣出甲商品500件和乙商品1300件,經(jīng)市場調(diào)查發(fā)現(xiàn),甲種商品零售單價(jià)每降0.1元,甲種商品每天可多銷售100件,商店決定把甲種商品的零售單價(jià)下降m(m>0)元,在不考慮其他因素的條件下,求當(dāng)m為何值時(shí),商店每天銷售甲、乙兩種商品獲取的總利潤為1800元(注:單件利潤=零售單價(jià)﹣進(jìn)貨單價(jià))

【答案】
(1)解:設(shè)甲商品進(jìn)貨單價(jià)x元,乙商品進(jìn)貨單價(jià)y元.

依題意,得

解得:

答:甲商品進(jìn)貨單價(jià)為1元,乙商品進(jìn)貨單價(jià)為2元


(2)解:依題意,得

(2﹣m﹣1)(500+1000m)+(3﹣2)×1300=1800

(1﹣m)(500+1000m)=500

即2m2﹣m=0

∴m1=0.5,m2=0

∵m>0

∴m=0不合舍去,即m=0.5

答:當(dāng)m=0.5時(shí),商店獲取的總利潤為1800元


【解析】(1)根據(jù)圖上信息可以得出甲乙商品之間價(jià)格之間的等量關(guān)系,即可得出方程組求出即可;(2)根據(jù)降價(jià)后甲每天賣出:(500+ ×100)件,每件降價(jià)后每件利潤為:(1﹣m)元;即可得出總利潤,利用一元二次方程解法求出即可.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在Rt△ABC中,∠ACB=90°,AC=5cm,BC=12cm,將△ABC繞點(diǎn)B順時(shí)針旋轉(zhuǎn)60°,得到△BDE,連接DC交AB于點(diǎn)F,則△ACF與△BDF的周長之和為cm.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,∠ABC的兩邊分別平行于∠DEF的兩邊,且∠ABC=25°.

(1)1=________________,2=________________;

(2)請觀察∠1、2分別與∠ABC有怎樣的關(guān)系,歸納出一個(gè)命題.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在矩形ABCD中,AB=2,BC=3,M為BC中點(diǎn),連接AM,過D作DE⊥AM于E,則DE的長度為(
A.2
B.
C.
D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在△ABC中,AD是角平分錢,點(diǎn)E在AC上,且∠EAD=∠ADE.
(1)求證:△DCE∽△BCA;
(2)若AB=3,AC=4.求DE的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知點(diǎn)P是不等邊△ABC的邊BC上的一點(diǎn),點(diǎn)D在邊AB或AC上,若由點(diǎn)P、D截得的小三角形與△ABC相似,那么D點(diǎn)的位置最多有(
A.2處
B.3處
C.4處
D.5處

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,點(diǎn)D、E、F分別為△ABC的三邊中點(diǎn),試說明△ABC∽△EFD.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在矩形ABCD中,AB=4cm,BC=8cm,AC的垂直平分線EF分別交AD,BC于點(diǎn)E,F(xiàn),垂足為點(diǎn)O.
(1)連接AF,CE,求證:四邊形AFCE為菱形;
(2)求AF的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知在Rt△AOB中,點(diǎn)A(1,2),∠OBA=90°,OB在x軸上,將△AOB繞點(diǎn)A逆時(shí)針旋轉(zhuǎn)90°,點(diǎn)O的對應(yīng)點(diǎn)C恰好落在雙曲線y= (k>0)上,則k的值為( )

A.1
B.2
C.3
D.4

查看答案和解析>>

同步練習(xí)冊答案