解:(1)分別過D,C兩點作DG⊥AB于點G,CH⊥AB于點H.
∵AB∥CD,
∴DG=CH,DG∥CH.
∴四邊形DGHC為矩形,GH=CD=1.
∵DG=CH,AD=BC,∠AGD=∠BHC=90°,
∴△AGD≌△BHC(HL).
∴AG=BH=
.
∵在Rt△AGD中,AG=3,AD=5,
∴DG=4.
∴S
梯形ABCD=
=16.
(2)∵MN∥AB,ME⊥AB,NF⊥AB,
∴ME=NF,ME∥NF.
∴四邊形MEFN為矩形.
∵AB∥CD,AD=BC,
∴∠A=∠B.
∵ME=NF,∠MEA=∠NFB=90°,
∴△MEA≌△NFB(AAS).
∴AE=BF.
設(shè)AE=x,則EF=7-2x.
∵∠A=∠A(公共角),∠MEA=∠DGA=90°,
∴△MEA∽△DGA.
∴
.
∴ME=
.
∴S
矩形MEFN=ME•EF=
x(7-2x)=-
(x-
)
2+
.
當(dāng)x=
時,ME=
<4,
∴四邊形MEFN面積的最大值為
.
(3)能.
由(2)可知,設(shè)AE=x,則EF=7-2x,ME=
x.
若四邊形MEFN為正方形,則ME=EF.
即
=7-2x.
解得x=
.
∴EF=7-2x=7-2×
=
<4.
∴四邊形MEFN能為正方形,其面積為S
正方形MEFN=(
)
2=
.
分析:(1)本題的關(guān)鍵是求梯形的高,可通過梯形兩底的差和腰的長求出梯形的高,然后根據(jù)梯形的面積公式即可得出梯形ABCD的面積.
(2)可用二次函數(shù)來求解.可設(shè)四邊形MEFN(其實是矩形)的面積為y,AE=BF=x,那么可根據(jù)AB的長表示出EF,然后根據(jù)相似三角形△AEM和△AGD得出的關(guān)于EM、GD、AE、AG的比例關(guān)系式用x表示出ME (也可用∠A的正切函數(shù)來求),然后根據(jù)矩形的面積公式即可得出y、x的函數(shù)關(guān)系式,根據(jù)函數(shù)的性質(zhì)即可求出y的最大值也就是矩形MEFN的最大面積.
(3)若四邊形MEFN為正方形,那么ME=EF,可據(jù)此確定x的值,然后將x的值代入(2)的函數(shù)式中即可求出正方形MEFN的面積.
點評:本題考查了等腰梯形的性質(zhì),矩形的性質(zhì),正方形的判定,相似三角形的性質(zhì)以及二次函數(shù)的應(yīng)用等知識點.綜合性較強,考查學(xué)生數(shù)形結(jié)合的數(shù)學(xué)思想方法.