如圖,對(duì)稱軸為直線的拋物線經(jīng)過點(diǎn)A(6,0)和B(0,4).
(1)求拋物線解析式及頂點(diǎn)D的坐標(biāo);
(2)設(shè)點(diǎn)E(x,y)是拋物線上位于第四象限內(nèi)一動(dòng)點(diǎn),將△OAE繞OA的中點(diǎn)旋轉(zhuǎn)180°,點(diǎn)E落到點(diǎn)F的位置.求四邊形OEAF的面積S與x之間的函數(shù)關(guān)系式,并寫出自變量x的取值范圍;
①當(dāng)四邊形OEAF的面積為24時(shí),請(qǐng)判斷四邊形OEAF的形狀.
②是否存在點(diǎn)E,使四邊形OEAF為正方形?若存在,求出點(diǎn)E的坐標(biāo);若不存在,請(qǐng)說明理由.
(3)若點(diǎn)P是x軸上一點(diǎn),以P、A、D為頂點(diǎn)作平行四邊形,該平行四邊形的另一頂點(diǎn)在y軸上,請(qǐng)直接寫出滿足條件的所有點(diǎn)P的坐標(biāo).

【答案】分析:(1)已知拋物線的對(duì)稱軸,可將其解析式設(shè)為頂點(diǎn)式,再根據(jù)已知的兩點(diǎn)坐標(biāo)由待定系數(shù)法確定該二次函數(shù)的解析式;進(jìn)而能得到頂點(diǎn)D的坐標(biāo).
(2)將△OAE繞線段OA中點(diǎn)旋轉(zhuǎn)180°后,旋轉(zhuǎn)前后的兩個(gè)三角形關(guān)于點(diǎn)OA的中點(diǎn)對(duì)稱,所以四邊形OEAF是平行四邊形,在求該四邊形的面積時(shí),只需求出它的一半即△OAE的面積即可,以O(shè)A為底、點(diǎn)E的縱坐標(biāo)的絕對(duì)值為高即可得到△OAE的面積表達(dá)式,則S、x的函數(shù)關(guān)系式可求;
①將S=24代入上面的S、x的函數(shù)關(guān)系式中,先求出點(diǎn)E的坐標(biāo),再判斷四邊形OEAF的形狀;
②若四邊形OEAF是正方形,那么△OAE必為等腰直角三角形,可據(jù)此求出點(diǎn)E的坐標(biāo),再代入拋物線的解析式中進(jìn)行驗(yàn)證即可.
(3)此題需要分兩種情況討論(將平行四邊形的另一頂點(diǎn)稱作點(diǎn)Q):
①線段PA為對(duì)角線時(shí),先求出DQ的中點(diǎn),再由P、A關(guān)于這個(gè)中點(diǎn)對(duì)稱來得到點(diǎn)P的坐標(biāo);
②線段PA為邊時(shí),那么DQ必與PA平行,即點(diǎn)Q、D的縱坐標(biāo)相同,則DQ的長(zhǎng)可知,而DQ=PA,可據(jù)此求出點(diǎn)P的坐標(biāo)(注意在點(diǎn)A的左右兩側(cè)各有一個(gè)).
解答:解:(1)依題意,設(shè)拋物線的解析式為:y=a(x-2+h,代入A(6,0)、B(0,4)后,得:
,解得
∴拋物線的解析式:y=(x-2-,頂點(diǎn)D(,-).

(2)依題意,知:△OAF≌△AOE,得:OE=AF、AE=OF;
∴四邊形OEAF是平形四邊形.
∵點(diǎn)E(x,y)在拋物線的圖象上,
∴y=(x-2-;
又∵點(diǎn)E在第四象限,∴y<0,解得:1<x<6;
S=2S△OAE=2••OA•|yE|=6•(-y)=-4(x-2+25,(1<x<6).
①當(dāng)S=24時(shí),-4(x-2+25=24,解得 x1=3、x2=4;
1、當(dāng)x=3時(shí),E(3,-4),此時(shí)OE=AE,四邊形OEAF為菱形;
2、當(dāng)x=4時(shí),E(4,-4),此時(shí)OE≠AE,且∠OEA≠90°,∴四邊形OEAF只是平行四邊形.
②假設(shè)四邊形OEAF為正方形,則OE=AE,OE⊥AE,已知O(0,0)、A(6,0),則 E(3,-3);
但此時(shí)的點(diǎn)E不在拋物線的圖象上,因此不存在符合條件的點(diǎn)E.

(3)設(shè)平行四邊形的另一頂點(diǎn)為Q,分兩種情況討論:
①當(dāng)PA為平行四邊形的對(duì)角線時(shí),另一條對(duì)角線DQ的中點(diǎn)為(,0),而P、A關(guān)于(,0)對(duì)稱,那么點(diǎn)P(-,0);
②當(dāng)PA為平行四邊形的邊時(shí),DQ∥PA,且PA=QD=,已知 A(6,0),則 P(,0)或(,0);
綜上,點(diǎn)P的坐標(biāo)為(-,0)或(,0)或(,0).
點(diǎn)評(píng):此題主要考查了函數(shù)解析式的確定、圖形的旋轉(zhuǎn)、圖形面積的求法以及特殊四邊形的判定等知識(shí);最后一題中,正確判斷出最后一頂點(diǎn)的三種情況是解答題目的關(guān)鍵.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

如圖,對(duì)稱軸為直線的拋物線經(jīng)過點(diǎn)A(6,0)和B(0,4)(1)求拋物線的解析式及頂點(diǎn)坐標(biāo);(2)設(shè)點(diǎn)E(x,y)是拋物線上的一動(dòng)點(diǎn),且位于第四象限,四邊形OEAF是以O(shè)A為對(duì)角線的平行四邊形,求OEAF的面積S與x之間的函數(shù)關(guān)系式,并寫出自變量x的取值范圍;①當(dāng)OEAF的面積為24時(shí),請(qǐng)判斷OEAF是否為菱形?②是否存在點(diǎn)E,使OEAF為正方形?若存在,求出點(diǎn)E的坐標(biāo);若不存在,請(qǐng)說明理由。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,對(duì)稱軸為直線的拋物線經(jīng)過點(diǎn)A(6,0)和B(0,4).

(1)求拋物線解析式及頂點(diǎn)坐標(biāo);

(2)設(shè)點(diǎn)E(,)是拋物線上一動(dòng)點(diǎn),且位于第四象限,四邊形OEAF是以O(shè)A為對(duì)角線的平行四邊形.求平行四邊形OEAF的面積S與之間的函數(shù)關(guān)系式,并寫出自變量的取值范圍;

     ①當(dāng)平行四邊形OEAF的面積為24時(shí),請(qǐng)判斷平行四邊形OEAF是否為菱形?

     ②是否存在點(diǎn)E,使平行四邊形OEAF為正方形?若存在,求出點(diǎn)E的坐標(biāo);若不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2010—2011學(xué)年湖北省鄂州市九年級(jí)上學(xué)期期末考試數(shù)學(xué)試卷 題型:解答題

如圖,對(duì)稱軸為直線的拋物線經(jīng)過點(diǎn)A(6,0)和B(0,4).

【小題1】求拋物線解析式及頂點(diǎn)坐標(biāo);
【小題2】設(shè)點(diǎn)E(x,y)是拋物線第四象限上一動(dòng)點(diǎn),四邊形OEAF是以O(shè)A為對(duì)角線的平行四邊形,求OEAF的面積S與x之間的函數(shù)關(guān)系式,并求出自變量的取值范圍
【小題3】若S=24,試判斷OEAF是否為菱形。
【小題4】若點(diǎn)E在⑴中的拋物線上,點(diǎn)F在對(duì)稱軸上,以O(shè)、E、A、F為頂點(diǎn)的四邊形能否為平行四邊形,若能,求出點(diǎn)E、F的坐標(biāo);若不能,請(qǐng)說明理由。(第⑷問不寫解答過程,只寫結(jié)論)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2013年初中畢業(yè)升學(xué)考試(重慶A卷)數(shù)學(xué)(解析版) 題型:解答題

如圖,對(duì)稱軸為直線的拋物線與x軸相交于A、B兩點(diǎn),其中A點(diǎn)的坐標(biāo)為(-3,0)。

(1)求點(diǎn)B的坐標(biāo);

(2)已知,C為拋物線與y軸的交點(diǎn)。

①若點(diǎn)P在拋物線上,且,求點(diǎn)P的坐標(biāo);

②設(shè)點(diǎn)Q是線段AC上的動(dòng)點(diǎn),作QD⊥x軸交拋物線于點(diǎn)D,求線段QD長(zhǎng)度的最大值。

 

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2011屆湖北省鄂州市九年級(jí)上學(xué)期期末考試數(shù)學(xué)試卷 題型:解答題

如圖,對(duì)稱軸為直線的拋物線經(jīng)過點(diǎn)A(6,0)和B(0,4).

1.求拋物線解析式及頂點(diǎn)坐標(biāo);

2.設(shè)點(diǎn)E(x,y)是拋物線第四象限上一動(dòng)點(diǎn),四邊形OEAF是以O(shè)A為對(duì)角線的平行四邊形,求OEAF的面積S與x之間的函數(shù)關(guān)系式,并求出自變量的取值范圍

3.若S=24,試判斷OEAF是否為菱形。

4.若點(diǎn)E在⑴中的拋物線上,點(diǎn)F在對(duì)稱軸上,以O(shè)、E、A、F為頂點(diǎn)的四邊形能否為平行四邊形,若能,求出點(diǎn)E、F的坐標(biāo);若不能,請(qǐng)說明理由。(第⑷問不寫解答過程,只寫結(jié)論)

 

查看答案和解析>>

同步練習(xí)冊(cè)答案