【題目】如圖,在梯形ABCD中,DC//AB,∠A=90°,AD=6cm,DC=4cmBC的坡度i=3:4,動點PA出發(fā)以2cm/s的速度沿AB方向向點B運動,動點Q從點B出發(fā)以3cm/s的速度沿BCD方向向點D運動,兩個動點同時出發(fā),當(dāng)其中一個動點到達終點時,另一個動點也隨之停止.設(shè)動點運動的時間為t秒.

1)求邊BC的長;

2)當(dāng)t為何值時,PCBQ相互平分;

3)連結(jié)PQ,設(shè)△PBQ的面積為y,探求yt的函數(shù)關(guān)系式,求t為何值時,y有最大值?最大值是多少?

【答案】1BC=10;(2秒時;PCBQ相互平分;(3,當(dāng)時,有最大值,為厘米2.

【解析】

1)作CEABE,根據(jù)坡度的定義進行求解;
2)要使PCBQ相互平分,只需保證四邊形CPBQ是平行四邊形,即可得到關(guān)于t的方程,進行求解;
3)此題要分兩種情況考慮:點QBC上,即時;當(dāng)點QCD上,即根據(jù)三角形的面積公式建立函數(shù)關(guān)系式,再進一步求解.

解:(1)CEABE,則四邊形ADCE是矩形,

CE=AD=6.

BC的坡度i=CE:BE=3:4,且BECE,

CE:BC=3:5

BC=10;

(2)要使PCBQ相互平分,只需保證四邊形CPBQ是平行四邊形,PB=CQ.

(1),得AB=4+8=12,則PB=122t.

122t=3t10,

t=4.4.

(3)當(dāng),BP=122t,

當(dāng)t=3時,y最大,是16.2

當(dāng),

t=時,y取得最大值,是16.

綜上所述,則當(dāng)t=3時,y取得最大值,是16.2.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,已知A2,0)、B31)、C1,3).

1)將ABC沿x軸負方向移動2個單位長度至A1B1C1,畫圖并寫出點C1的坐標(biāo);

2)以點A1為旋轉(zhuǎn)中心,將A1B1C1逆時針方向旋轉(zhuǎn)90°得到A2B2C2,畫圖并寫出點C2的坐標(biāo);

3)以B、C1、C2為頂點的三角形是   三角形,其外接圓的半徑R   

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】6分)某海域有A,B兩個港口,B港口在A港口北偏西30°方向上,距A港口60海里,有一艘船從A港口出發(fā),沿東北方向行駛一段距離后,到達位于B港口南偏東75°方向的C處,求該船與B港口之間的距離即CB的長(結(jié)果保留根號).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知:二次函數(shù)yax2+bx+c的圖象如圖所示,下列結(jié)論中:

①abc0;②b24ac0③3a+c0;a+c2b2,⑤a+b+c0

其中正確的序號是_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某電子廠商投產(chǎn)一種新型電子產(chǎn)品,每件制造成本為18元,試銷過程中發(fā)現(xiàn),每月銷售量y(萬件)與銷售單價x(元)之間的關(guān)系可以近似地看作一次函數(shù)y=﹣2x+100.(利潤=售價﹣制造成本)

1)寫出每月的利潤z(萬元)與銷售單價x(元)之間的函數(shù)關(guān)系式;

2)當(dāng)銷售單價為多少元時,廠商每月能獲得350萬元的利潤?當(dāng)銷售單價為多少元時,廠商每月能獲得最大利潤?最大利潤是多少?

3)根據(jù)相關(guān)部門規(guī)定,這種電子產(chǎn)品的銷售單價不能高于32元,如果廠商要獲得每月不低于350萬元的利潤,那么制造出這種產(chǎn)品每月的最低制造成本需要多少萬元?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,AD為等邊△ABC的高,E、F分別為線段AD、AC上的動點,且AECF,當(dāng)BF+CE取得最小值時,∠AFB=( 。

A. 112.5°B. 105°C. 90°D. 82.5°

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知拋物線y=﹣x2+bx+c與一直線相交于A1,0)、C(﹣2,3)兩點,與y軸交于點N,其頂點為D

1)求拋物線及直線AC的函數(shù)關(guān)系式;

2)若P是拋物線上位于直線AC上方的一個動點,求APC的面積的最大值及此時點P的坐標(biāo);

3)在對稱軸上是否存在一點M,使ANM的周長最。舸嬖冢埱蟪M點的坐標(biāo)和ANM周長的最小值;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平行四邊形ABCD中,,點E、F分別是BCAD的中點.

1)求證:;

2)當(dāng)時,求四邊形AECF的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,直線l的函數(shù)表達式為y=x,點O1的坐標(biāo)為(1,0),以O1為圓心,O1O為半徑畫半圓,交直線l于點P1,交x軸正半軸于點O2,由弦P1O2圍成的弓形面積記為S1,以O2為圓心,O2O為半徑畫圓,交直線l于點P2,交x軸正半軸于點O3,由弦P2O3和圍成的弓形面積記為S2,以O3為圓心,O3O為半徑畫圓,交直線l于點P3,交x軸正半軸于點O4,由弦P3O4圍成的弓形面積記為S3;按此做法進行下去,其中S2018的面積為__________

查看答案和解析>>

同步練習(xí)冊答案