【題目】如圖,∠1+∠2=180°,∠DAE=∠BCF,DA平分∠BDF.
(1)AE與FC會(huì)平行嗎?說(shuō)明理由.
(2)AD與BC的位置關(guān)系如何?為什么?
(3)BC平分∠DBE嗎?為什么.
【答案】(1)平行,理由見(jiàn)解析;(2)平行,理由見(jiàn)解析;(3) 平分,理由見(jiàn)解析.
【解析】試題分析:(1)∠1+∠2=180°而∠2+∠CDB=180°,則∠CDB=∠1,根據(jù)同位角相等,兩直線平行,求得結(jié)論;
(2)要說(shuō)明AD與BC平行,只要說(shuō)明∠BCF+∠CDA=180°即可.而根據(jù)AE∥FC可得:∠CDA+∠DEA=180°,再據(jù)∠DAE=∠BCF就可以證得.
(3)BC平分∠DBE即說(shuō)明∠EBC=∠DBC是否成立.根據(jù)AE∥FC,可得:∠EBC=∠BCF,據(jù)AD∥BC得到:∠BCF=∠FAD,∠DBC=∠BAD,進(jìn)而就可以證出結(jié)論.
解:(1)平行;
證明:∵∠2+∠CDB=180°,∠1+∠2=180°,
∴∠CDB=∠1,
∴AE∥FC.
(2)平行,
證明:∵AE∥FC,
∴∠CDA+∠DAE=180°,
∵∠DAE=∠BCF
∴∠CDA+∠BCF=180°,
∴AD∥BC.
(3)平分,
證明:∵AE∥FC,
∴∠EBC=∠BCF,
∵AD∥BC,
∴∠BCF=∠FDA,∠DBC=∠BDA,
又∵DA平分∠BDF,即∠FDA=∠BDA,
∴∠EBC=∠DBC,
∴BC平分∠DBE.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,有一個(gè)正方體紙盒,在它的三個(gè)側(cè)面分別畫有三角形、正方形和圓,現(xiàn)用一把剪刀沿著它的棱剪開(kāi)成一個(gè)平面圖形,則展開(kāi)圖可以是( )
A. (A) B. (B) C. (C) D. (D)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】運(yùn)用乘法公式計(jì)算(x+3)2的結(jié)果是( )
A.x2+9
B.x2﹣6x+9
C.x2+6x+9
D.x2+3x+9
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某市2016年初中畢業(yè)生人數(shù)約為63 000,數(shù)63 000用科學(xué)記數(shù)法表示為 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】對(duì)于多項(xiàng)式﹣2ab2+3a3b+5﹣a2 , 下列說(shuō)法中,正確的是( )
A.三次四項(xiàng)式
B.四次四項(xiàng)式
C.二次項(xiàng)系數(shù)是1
D.一次項(xiàng)是5
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知a=255,b=344,c=433,則a、b、c的大小關(guān)系為( )
A. a>b>cB. a>c>bC. b>c>aD. b>a>c
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某年級(jí)組織學(xué)生參加夏令營(yíng),分為甲、乙、丙三組進(jìn)行活動(dòng).下面兩幅統(tǒng)計(jì)圖反映了學(xué)生報(bào)名參加夏令營(yíng)的情況.請(qǐng)你根據(jù)圖中的信息回答下列問(wèn)題:
報(bào)名人數(shù)分布直方圖 報(bào)名人數(shù)扇形統(tǒng)計(jì)圖
(1)求該年級(jí)報(bào)名參加本次活動(dòng)的總?cè)藬?shù);
(2)求該年級(jí)報(bào)名參加乙組的人數(shù),并補(bǔ)全頻數(shù)分布直方圖;
(3)根據(jù)實(shí)際情況,需從甲組抽調(diào)部分同學(xué)到丙組,使丙組人數(shù)是甲組人數(shù)的3倍,那么,應(yīng)從甲組抽調(diào)多少名學(xué)生到丙組?
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com