(2013•安徽)我們把由不平行于底邊的直線(xiàn)截等腰三角形的兩腰所得的四邊形稱(chēng)為“準(zhǔn)等腰梯形”.如圖1,四邊形ABCD即為“準(zhǔn)等腰梯形”.其中∠B=∠C.
(1)在圖1所示的“準(zhǔn)等腰梯形”ABCD中,選擇合適的一個(gè)頂點(diǎn)引一條直線(xiàn)將四邊形ABCD分割成一個(gè)等腰梯形和一個(gè)三角形或分割成一個(gè)等腰三角形和一個(gè)梯形(畫(huà)出一種示意圖即可);
(2)如圖2,在“準(zhǔn)等腰梯形”ABCD中∠B=∠C.E為邊BC上一點(diǎn),若AB∥DE,AE∥DC,求證:
=
;
(3)在由不平行于BC的直線(xiàn)AD截△PBC所得的四邊形ABCD中,∠BAD與∠ADC的平分線(xiàn)交于點(diǎn)E.若EB=EC,請(qǐng)問(wèn)當(dāng)點(diǎn)E在四邊形ABCD內(nèi)部時(shí)(即圖3所示情形),四邊形ABCD是不是“準(zhǔn)等腰梯形”,為什么?若點(diǎn)E不在四邊形ABCD內(nèi)部時(shí),情況又將如何?寫(xiě)出你的結(jié)論.(不必說(shuō)明理由)