如圖,在Rt△ABC中,∠A=90°,AB=8,AC=6.若動點D從點B出發(fā),沿線段BA運動到點A為止,運動速度為每秒2個單位長度.過點D作DE∥BC交AC于點E,設動點D運動的時間為x秒,AE的長為y.
(1)求出y關于x的函數(shù)關系式,并寫出自變量x的取值范圍;
(2)當x為何值時,△BDE的面積S有最大值,最大值為多少?

【答案】分析:(1)根據(jù)已知條件DE∥BC可以判定△ADE∽△ABC;然后利用相似三角形的對應邊成比例求得;最后用x、y表示該比例式中的線段的長度;
(2)根據(jù)∠A=90°得出S△BDE=•BD•AE,再運用函數(shù)性質求解即可.
解答:解:(1)由題可知,BD=2x,AD=8-2x,
∵DE∥BC
∴△ADE∽△ABC


,
其中0<x≤4;

(2)∵∠A=90°
∴AE是△BDE中BD邊上的高,

∴S=×2x×(-x+6)
=-(x2-4x+4)+6
=-(x-2)2+6.
∴當x=2時,S有最大值,且最大值為6.
點評:本題主要考查相似三角形的判定、三角形的面積及涉及到二次函數(shù)的最值問題,找到等量比是解題的關鍵.
練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

(2013•莆田質檢)如圖,在Rt△ABC中,∠C=90°,∠BAC的平分線AD交BC于點D,點E是AB上一點,以AE為直徑的⊙O過點D,且交AC于點F.
(1)求證:BC是⊙O的切線;
(2)若CD=6,AC=8,求AE.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖,在Rt△ABC中,∠C=90°,AC=6cm,BC=8cm,AD和BD分別是∠BAC和∠ABC的平分線,它們相交于點D,求點D到BC的距離.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖,在Rt△ABC中,∠C=90°,∠A=30°,BC=1,將三角板中一個30°角的頂點D放在AB邊上移動,使這個30°角的兩邊分別與△ABC的邊AC、BC相交于點E、F,且使DE始終與AB垂直.
(1)畫出符合條件的圖形.連接EF后,寫出與△ABC一定相似的三角形;
(2)設AD=x,CF=y.求y與x之間函數(shù)解析式,并寫出函數(shù)的定義域;
(3)如果△CEF與△DEF相似,求AD的長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖,在Rt△ABC中,BD⊥AC,sinA=
3
5
,則cos∠CBD的值是( 。

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖,在Rt△ABC中,∠ACB=90°,AC=8cm,BC=4cm,D、E分別為邊AB、BC的中點,連接DE,點P從點A出發(fā),沿折線AD-DE-EB運動,到點B停止.點P在AD上以
5
cm/s的速度運動,在折線DE-EB上以1cm/s的速度運動.當點P與點A不重合時,過點P作PQ⊥AC于點Q,以PQ為邊作正方形PQMN,使點M落在線段AC上.設點P的運動時間為t(s).
(1)當點P在線段DE上運動時,線段DP的長為
(t-2)
(t-2)
cm,(用含t的代數(shù)式表示).
(2)當點N落在AB邊上時,求t的值.
(3)當正方形PQMN與△ABC重疊部分圖形為五邊形時,設五邊形的面積為S(cm2),求S與t的函數(shù)關系式.

查看答案和解析>>

同步練習冊答案