【題目】如圖,直線AB、CD相交于O點(diǎn),∠AOC與∠AOD的度數(shù)比為4:5,OE⊥AB于點(diǎn)O,OF平分∠DOB,求∠EOF的度數(shù)
【答案】500
【解析】試題分析:設(shè)∠AOC=4x,則∠AOD=5x,根據(jù)鄰補(bǔ)角的定義得到∠AOC+∠AOD=180°,即4x+5x=180°,解得x=20°,則∠AOC=4x=80°,利用對(duì)頂角相等得∠BOD=80°,由OE⊥AB得到∠BOE=90°,則∠DOE=∠BOE-∠BOD=10°,再根據(jù)角平分線的定義得到∠DOF= ∠BOD=40°,利用∠EOF=∠EOD+∠DOF即可得到∠EOF的度數(shù).
試題解析:
設(shè)∠AOC=4x,則∠AOD=5x,
∵∠AOC+∠AOD=180°,
∴4x+5x=180°,解得x=20°,
∴∠AOC=4x=80°,
∴∠BOD=80°,
∵OE⊥AB,
∴∠BOE=90°,
∴∠DOE=∠BOE-∠BOD=10°,
又∵OF平分∠DOB,
∴∠DOF= ∠BOD=40°,
∴∠EOF=∠EOD+∠DOF=10°+40°=50°.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知:在△ABC中,∠ACB=90°,CD為高,且CD、CE三等分∠ACB.
(1)求∠B的度數(shù).
(2)求證:CE是AB邊上的中線,且.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖所示:圖象中所反映的過程是:小冬從家跑步去體育場(chǎng),在那里鍛煉了一陣后,又去早餐店吃早餐,然后散步走回家.其中x軸表示時(shí)間,y軸表示小冬離家的距離.根據(jù)圖象提供的信息,下列說法正確的有________.
①.體育場(chǎng)離小冬家2.5千米 ②.小冬在體育場(chǎng)鍛煉了15分鐘
③.體育場(chǎng)離早餐店4千米 ④.小冬從早餐店回家的平均速度是3千米/小時(shí)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】用尺規(guī)作一個(gè)直角三角形,使其兩條直角邊分別等于已知線段時(shí),實(shí)際上就是已知的條件是( )
A. 三角形的兩條邊和它們的夾角
B. 三角形的三邊
C. 三角形的兩個(gè)角和它們的夾邊
D. 三角形的三個(gè)角
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】下面幾種圖形:①三角形;②長(zhǎng)方形;③正方體;④圓;⑤圓錐;⑥圓柱.其中屬于立體圖形的是( )
A. ③⑤⑥ B. ①②③ C. ③⑥ D. ④⑤
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,△ABC中,AB=AC,E在BA的延長(zhǎng)線上,AD平分∠CAE.
(1)求證:AD∥BC;
(2)過點(diǎn)C作CG⊥AD于點(diǎn)F,交AE于點(diǎn)G.若AF=4,求BC的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如果一個(gè)三角形的三條高的交點(diǎn)恰好是這個(gè)三角形的一個(gè)頂點(diǎn),那么這個(gè)三角形是( )
A.銳角三角形
B.直角三角形
C.鈍角三角形
D.不能確定
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com