二次函數(shù)y=-x2+bx+c的圖象如圖所示,下列幾個(gè)結(jié)論:
①對(duì)稱(chēng)軸為x=2;②當(dāng)y>0時(shí),x<0或x>4;③函數(shù)解析式為y=-x(x-4);④當(dāng)x≤0時(shí),y隨x的增大而增大.其中正確的結(jié)論有______(填寫(xiě)序號(hào))
由圖象可知對(duì)稱(chēng)軸為x=2,圖象過(guò)原點(diǎn),
∴c=0,-
b
2×(-1)
=2,∴b=4,
∴二次函數(shù)的解析式為y=-x2+4x,
由圖象可知當(dāng)0<x<4時(shí),y>0;
當(dāng)x<2時(shí),y隨x的增大而增大.
正確的有①③④.
故答案為:①③④.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

已知拋物線(xiàn)y=mx2-(m-5)x-5(m>0)與x軸交于兩點(diǎn),A(x1,0),B(x2,0)(x1<x2),與y軸交于點(diǎn)C,且AB=6.
(1)求拋物線(xiàn)與直線(xiàn)BC的解析式;
(2)在所給出的直角坐標(biāo)系中作出拋物線(xiàn)的圖象.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

如圖,已知拋物線(xiàn)y=ax2+bx+c(a≠0)與x軸交于A(yíng)(-6,0)、B(2,0),與y軸交于點(diǎn)C(0,-6).
(1)求此拋物線(xiàn)的函數(shù)表達(dá)式,寫(xiě)出它的對(duì)稱(chēng)軸;
(2)若在拋物線(xiàn)的對(duì)稱(chēng)軸上存在一點(diǎn)M,使△MBC的周長(zhǎng)最小,求點(diǎn)M的坐標(biāo);
(3)若點(diǎn)P(0,k)為線(xiàn)段OC上的一個(gè)不與端點(diǎn)重合的動(dòng)點(diǎn),過(guò)點(diǎn)P作PDCM交x于點(diǎn)D,連接MD、MP,設(shè)△MPD的面積為S,求當(dāng)點(diǎn)P運(yùn)動(dòng)到何處時(shí)S的值最大?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

拋物線(xiàn)y=ax2+bx+c,與x軸交于點(diǎn)A(-3,0),對(duì)稱(chēng)軸為x=-1,頂點(diǎn)C到x軸的距離為2,求此拋物線(xiàn)的解析式.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

如圖,在直角坐標(biāo)系xOy中,二次函數(shù)y=-
2
3
x2+bx+5
的圖象與x軸、y軸的公共點(diǎn)分別為A(5、0)、B,點(diǎn)C在這個(gè)二次函數(shù)的圖象上,且橫坐標(biāo)為3.
(1)求這個(gè)二次函數(shù)的解析式;
(2)求∠BAC的正切值;
(3)如果點(diǎn)D在這個(gè)二次函數(shù)的圖象上,且∠DAC=45°,求點(diǎn)D的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

衢江區(qū)某蔬菜基地種植西紅柿,由歷年市場(chǎng)行情得知,從2月1日起的300天內(nèi),西紅柿市場(chǎng)售價(jià) w1與上市時(shí)間t的關(guān)系用圖甲的一條折線(xiàn)表示;西紅柿的種植成本 w2與上市時(shí)間t的關(guān)系用圖乙表示的拋物線(xiàn)段表示.
(1)求出圖甲表示的市場(chǎng)售價(jià) w1與時(shí)間t的函數(shù)關(guān)系式;
(2)求出圖乙表示的種植成本 w2與時(shí)間t的函數(shù)關(guān)系式;
(3)市場(chǎng)售價(jià)減去種植成本為純收益,當(dāng)0<t≤200時(shí),何時(shí)上市西紅柿純收益最大?(售價(jià)與成本單位:元/百千克,時(shí)間單位:天)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

如圖,在△ABC中,AB=AC,點(diǎn)D在BC上,DEAC,交AB與點(diǎn)E,點(diǎn)F在A(yíng)C上,DC=DF,若BC=3,EB=4,CD=x,CF=y,求y與x的函數(shù)關(guān)系式,并寫(xiě)出自變量x的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

有一座拋物線(xiàn)型拱橋,其水面寬AB為18米,拱頂O離水面AB的距離OM為8米,貨船在水面上的部分的橫斷面是矩形CDEF,如圖建立平面直角坐標(biāo)系.
(1)求此拋物線(xiàn)的解析式;
(2)如果限定矩形的長(zhǎng)CD為9米,那么矩形的高DE不能超過(guò)多少米,才能使船通過(guò)拱橋;
(3)若設(shè)EF=a,請(qǐng)將矩形CDEF的面積S用含a的代數(shù)式表示,并指出a的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

取一張矩形的紙進(jìn)行折疊,具體操作過(guò)程如下:
第一步:先把矩形ABCD對(duì)折,折痕為MN,如圖(1)所示;
第二步:再把B點(diǎn)疊在折痕線(xiàn)MN上,折痕為AE,點(diǎn)B在MN上的對(duì)應(yīng)點(diǎn)為B′,得Rt△AB′E,如圖(2)所示;
第三步:沿EB′線(xiàn)折疊得折痕EF,如圖(3)所示;利用展開(kāi)圖(4)所示.

探究:
(1)△AEF是什么三角形?證明你的結(jié)論.
(2)對(duì)于任一矩形,按照上述方法是否都能折出這種三角形?請(qǐng)說(shuō)明理由.
(3)如圖(5),將矩形紙片ABCD沿EF折疊,使點(diǎn)A落在DC邊上的點(diǎn)A′處,x軸垂直平分DA,直線(xiàn)EF的表達(dá)式為y=kx-k (k<0)
①問(wèn):EF與拋物線(xiàn)y=-
1
8
x2
有幾個(gè)公共點(diǎn)?
②當(dāng)EF與拋物線(xiàn)只有一個(gè)公共點(diǎn)時(shí),設(shè)A′(x,y),求
x
y
的值.

查看答案和解析>>

同步練習(xí)冊(cè)答案