如圖所示,已知拋物線y=ax2+bx+c過點(diǎn)A(-1,0),且經(jīng)過直線y=x-3與坐標(biāo)軸的兩個(gè)交點(diǎn)B、C.
(1)求拋物線的表達(dá)式;
(2)若點(diǎn)M在第四象限內(nèi)且在拋物線上,有OM⊥BC,垂足為D,求點(diǎn)M的坐標(biāo).
分析:(1)根據(jù)直線y=x-3求出其與x軸、y軸的交點(diǎn)A、B的坐標(biāo),利用三點(diǎn)坐標(biāo),結(jié)合待定系數(shù)法,即可求出拋物線解析式;
(2)根據(jù)直線OD和BC垂直時(shí)比例系數(shù)互為相反數(shù),得到OD的比例系數(shù),又直線OD過原點(diǎn),可知其為正比例函數(shù),即可得到OD的解析式,然后將直線和拋物線組成方程組,即可解出M的坐標(biāo).
解答:解:(1)∵y=x-3與x軸的交點(diǎn)B的坐標(biāo)為(3,0),與y軸的交點(diǎn)C的坐標(biāo)為(0,-3),A點(diǎn)坐標(biāo)為(-1,0),
∴設(shè)二次函數(shù)解析式為y=a(x+1)(x-3),
將C(0,-3)代入解析式得,
-3=a×1×(-3),
解得,a=1,
則二次函數(shù)解析式為y=(x+1)(x-3),
即y=x2-2x-3,
(2)∵OD過原點(diǎn),
∴設(shè)OD的解析式為y=kx,
∵OM⊥BC,BC解析式為y=x-3,
∴kOD=-1,
則OD的解析式為y=-x,
將y=x2-2x-3和y=-x組成方程組得
y=-x
y=x2-2x-3
,
整理得,x2-x-3=0,
解得,x1=
1+
13
2
,x2=
1-
13
2
(不合題意,舍去),
把x1=
1+
13
2
代入y=-x得,
y1=-
1+
13
2
,
∴M點(diǎn)坐標(biāo)為(
1+
13
2
,-
1+
13
2
).
點(diǎn)評(píng):本題考查了二次函數(shù)的相關(guān)問題,涉及待定系數(shù)法求函數(shù)解析式,拋物線、直線與x軸的交點(diǎn)問題、垂直直線的系數(shù)的關(guān)系,難度較大,要仔細(xì)審題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖所示,已知拋物線y=x2-1與x軸交于A、B兩點(diǎn),與y軸交于點(diǎn)C.
(1)求A、B、C三點(diǎn)的坐標(biāo);
(2)過點(diǎn)A作AP∥CB交拋物線于點(diǎn)P,求四邊形ACBP的面積;
(3)在x軸上方的拋物線上是否存在一點(diǎn)M,過M作MG⊥x軸于點(diǎn)G,使以A、M、G三點(diǎn)為頂點(diǎn)的三角形與△PCA相似?若存在,請(qǐng)求出M點(diǎn)的坐標(biāo);否則,請(qǐng)說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖所示,已知拋物線y=x2-4x+3與x軸交于A,B兩點(diǎn),C為拋物線的頂點(diǎn),過點(diǎn)A作AP∥精英家教網(wǎng)BC交拋物線于點(diǎn)P.
(1)求A,B,C三點(diǎn)坐標(biāo);
(2)求四邊形ACBP的面積;
(3)在x軸上方的拋物線上是否存在點(diǎn)M,過點(diǎn)M作ME⊥x軸于點(diǎn)E,使A,M,E三點(diǎn)為頂點(diǎn)的三角形與△PCA相似?若存在,請(qǐng)求出點(diǎn)M的坐標(biāo);若不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖所示,已知拋物線y=ax2+bx+c(a≠0)經(jīng)過原點(diǎn)和點(diǎn)(-2,0),則2a-3b
 
0.(>、<或=)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖所示,已知拋物線y=x2+bx+c與x軸交于A,B兩點(diǎn),與y軸交于點(diǎn)C,點(diǎn)B的坐標(biāo)為(3,0),拋物線的對(duì)稱軸x=2交x軸于點(diǎn)E.
(1)求交點(diǎn)A的坐標(biāo)及拋物線的函數(shù)關(guān)系式;
(2)在平面直角坐標(biāo)系xOy中是否存在點(diǎn)P,使點(diǎn)P與A,B,C三點(diǎn)構(gòu)成一個(gè)平行四邊形?若存在,請(qǐng)直接寫出點(diǎn)P坐標(biāo);若不存在,請(qǐng)說明理由;
(3)連接CB交拋物線對(duì)稱軸于點(diǎn)D,在拋物線上是否存在一點(diǎn)Q,使得直線CQ把四邊形DEOC分成面積比為1:7的兩部分?若存在,請(qǐng)求出點(diǎn)Q坐標(biāo);若不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2012•衡陽(yáng))如圖所示,已知拋物線的頂點(diǎn)為坐標(biāo)原點(diǎn)O,矩形ABCD的頂點(diǎn)A,D在拋物線上,且AD平行x軸,交y軸于點(diǎn)F,AB的中點(diǎn)E在x軸上,B點(diǎn)的坐標(biāo)為(2,1),點(diǎn)P(a,b)在拋物線上運(yùn)動(dòng).(點(diǎn)P異于點(diǎn)O)
(1)求此拋物線的解析式.
(2)過點(diǎn)P作CB所在直線的垂線,垂足為點(diǎn)R,
①求證:PF=PR;
②是否存在點(diǎn)P,使得△PFR為等邊三角形?若存在,求出點(diǎn)P的坐標(biāo);若不存在,請(qǐng)說明理由;
③延長(zhǎng)PF交拋物線于另一點(diǎn)Q,過Q作BC所在直線的垂線,垂足為S,試判斷△RSF的形狀.

查看答案和解析>>

同步練習(xí)冊(cè)答案