【題目】在菱形ABCD中,∠A=60°,AB=8cm,如圖①,點(diǎn)E,H從點(diǎn)A開(kāi)始向B,D運(yùn)動(dòng),同時(shí)點(diǎn)F,G從點(diǎn)C向B,D運(yùn)動(dòng),運(yùn)動(dòng)速度都為1cm/秒,運(yùn)動(dòng)時(shí)間為t秒(0≤t<8).
(1)當(dāng)運(yùn)動(dòng)時(shí)間t=4時(shí),求證:四邊形EFGH為矩形;
(2)當(dāng)t等于多少秒時(shí),四邊形EFGH面積是菱形ABCD面積的;
(3)如圖②,連接HF,BG,當(dāng)t等于多少秒時(shí),HF⊥BG.
【答案】(1)見(jiàn)解析;(2) t=;(3)t=4.
【解析】
(1)根據(jù)t=4時(shí),E、F、G、H分別是AB、BC、CD、AD的中點(diǎn),可證四邊形EFGH為矩形;
(2)先證明四邊形EFGH為矩形,然后根據(jù)∠ADB=60°求出HG=,由四邊形EFGH面積是菱形ABCD面積的列方程求解即可;
(3)延長(zhǎng)GF,過(guò)點(diǎn)B作BM⊥FG交點(diǎn)M,由(2)可知,FG=t, HG=,證明∽,根據(jù)相似三角形的對(duì)應(yīng)邊成比例列出比例式,在含30°的直角三角形BMF中求出BM、FM,代入比例式即可求出t值.
解:(1)連接AC、BD,如圖:
當(dāng)t=4時(shí),AE=AH=CF=CG=4
在菱形ABCD中,AB=BC=CD=AD=8,AC⊥BD
E、F、G、H分別是AB、BC、CD、AD的中點(diǎn)
EH∥BD,FG∥BD,EF∥AC,HG∥AC
EH∥FG,EF∥HG EH∥BD,FG∥BD
四邊形EFGH為平行四邊形
EH∥BD,EF∥AC,AC⊥BD
EH⊥RF
四邊形EFGH為矩形;
(2)由(1)中圖可知AE=AH=CF=CG=t,則BE=DH=BF=DG=8-t
在菱形ABCD中,AB=BC=CD=AD=8,AC⊥BD,∠A=60°,
EH=t,∠ADB=60°,
,∠A=∠A ,
EH∥BD
同理可得:FG∥BD,EF∥AC,HG∥AC,
EH∥FG,EF∥HG,
EH∥BD,FG∥BD
四邊形EFGH為平行四邊形
EH∥BD,EF∥AC,AC⊥BD,
EH⊥EF,
四邊形EFGH為矩形,
∠ADB=60°,BD⊥HG,
HG=
四邊形EFGH面積是菱形ABCD面積的,
t·=··8·
解得 t=,
當(dāng)t=時(shí),四邊形EFGH面積是菱形ABCD面積的;
(3)延長(zhǎng)GF,過(guò)點(diǎn)B作BM⊥FG交點(diǎn)M,
由(2)可知,FG=t,BF=8-t,HG=,四邊形EFGH為矩形,HF⊥BG
∠FHG+∠HFG=90°,∠FGB+∠HFG=90° ∠FHG=∠FGB
又∠FGH=∠FMB,
∽
,
化簡(jiǎn)得
解得t=4或t=24(舍去)
當(dāng)t=4時(shí),HF⊥BG.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在ABCD中,點(diǎn)E為CD的中點(diǎn),點(diǎn)F在BC上,且CF=2BF,連接AE,AF,若AF=,AE=7,tan∠EAF=,則線段BF的長(zhǎng)為__________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,矩形OABC的邊OA,OC分別在x軸、y軸上,點(diǎn)B的坐標(biāo)為( ,5),△ACD與△ACO關(guān)于直線AC對(duì)稱(點(diǎn)D和O對(duì)應(yīng)),反比例函數(shù)y= (k≠0)的圖象與AB,BC分別交于E,F兩點(diǎn),連結(jié)DE,若DE∥x軸,則點(diǎn)F的坐標(biāo)為_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,將Rt△ABC繞直角頂點(diǎn)B逆時(shí)針旋轉(zhuǎn)90°得到△DBE,DE的延長(zhǎng)線恰好經(jīng)過(guò)AC的中點(diǎn)F,連接AD,CE.
(1)求證:AE=CE;
(2)若BC=,求AB的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】觀察下列幾組勾股數(shù):3,4,5; 5,12,13; 7,24,25; 9,40,41…按此規(guī)律,當(dāng)直角三角形的最小直角邊長(zhǎng)是11時(shí),則較長(zhǎng)直角邊長(zhǎng)是________;當(dāng)直角三角形的最小直角邊長(zhǎng)是時(shí),則較長(zhǎng)直角邊長(zhǎng)是________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,拋物線y=﹣x2+2x+3與x軸交于點(diǎn)A,C(點(diǎn)A在點(diǎn)C的右側(cè)),與y軸交于點(diǎn)B
(1)求點(diǎn)A,B的坐標(biāo)及直線AB的函數(shù)表達(dá)式;
(2)若直線l⊥x軸,且直線l在第一象限內(nèi)與拋物線交于點(diǎn)M,與直線AB交于點(diǎn)N,求點(diǎn)M與點(diǎn)N之間的距離的最大值,并求出此時(shí)點(diǎn)M,N的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知A(m,2),B(﹣3,n)兩點(diǎn)關(guān)于原點(diǎn)O對(duì)稱,反比例函數(shù)y=的圖象經(jīng)過(guò)點(diǎn)A.
(1)求反比例函數(shù)的解析式并判斷點(diǎn)B是否在這個(gè)反比例函數(shù)的圖象上;
(2)點(diǎn)P(x1,y1)也在這個(gè)反比例函數(shù)的圖象上,﹣3<x1<m且x1≠0,請(qǐng)直接寫(xiě)出y1的范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】直線y=kx+k﹣2經(jīng)過(guò)點(diǎn)(m,n+1)和(m+1,2n+3),且﹣2<k<0,則n的取值范圍是( 。
A. ﹣2<n<0B. ﹣4<n<﹣2C. ﹣4<n<0D. 0<n<﹣2
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,大樓AB右側(cè)有一障礙物,在障礙物的旁邊有一幢小樓DE,在小樓的頂端D處測(cè)得障礙物邊緣點(diǎn)C的俯角為30°,測(cè)得大樓頂端A的仰角為45°(點(diǎn)B,C,E在同一水平直線上),已知AB=80 m,DE=10 m,求障礙物B,C兩點(diǎn)間的距離.(結(jié)果精確到0.1 m)(參考數(shù)據(jù): ≈1.414,、≈1.732)
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com