【題目】為參加學校的“我愛古詩詞”知識競賽,小王所在班級組織了一次古詩詞知識測試,并將全班同學的分數(shù)(得分取正整數(shù),滿分為100分)進行統(tǒng)計,以下是根據(jù)這次測試成績制作的不完整的頻率分布表和頻率分布直方圖.

組別

分組

頻數(shù)

頻率

1

50≤x<60

9

0.18

2

60≤x<70

a

3

70≤x<80

20

0.40

4

80≤x<90

0.08

5

90≤x≤100

2

b

合計


請根據(jù)以上頻率分布表和頻率分布直方圖,回答下列問題:
(1)求出a、b、x、y的值;
(2)若要從小明、小敏等五位成績優(yōu)秀的同學中隨機選取兩位參加競賽,請用“列表法”或“樹狀圖”求出小明、小敏同時被選中的概率.(注:五位同學請用A、B、C、D、E表示,其中小明為A,小敏為B)

【答案】
(1)解:9÷0.8=50,50×0.08=4,

所以a=50﹣9﹣20﹣4﹣2=15,

b=2÷50=0.04,

x=15÷50÷10=0.03;


(2)解:畫樹狀圖為:(五位同學請用A、B、C、D、E表示,其中小明為A,小敏為B)

共有20種等可能的結(jié)果數(shù),其中小明、小敏同時被選中的結(jié)果數(shù)為2,

所以小明、小敏同時被選中的概率= =


【解析】(1)先利用第1組的頻數(shù)除以它的頻率得到樣本容量,再計算出第4組的頻數(shù),則利用樣本容量分別減去其它各組的頻數(shù)即可得到a的值,然后利用2除以樣本容量得到b的值,最后用第2組的頻數(shù)a除以樣本容量后再除以10即可得到x的值;(2)畫樹狀圖(五位同學請用A、B、C、D、E表示,其中小明為A,小敏為B)展示所有20種等可能的結(jié)果數(shù),找出小明、小敏同時被選中的結(jié)果數(shù),然后根據(jù)概率公式求解.
【考點精析】掌握頻數(shù)分布直方圖和列表法與樹狀圖法是解答本題的根本,需要知道特點:①易于顯示各組的頻數(shù)分布情況;②易于顯示各組的頻數(shù)差別.(注意區(qū)分條形統(tǒng)計圖與頻數(shù)分布直方圖);當一次試驗要設(shè)計三個或更多的因素時,用列表法就不方便了,為了不重不漏地列出所有可能的結(jié)果,通常采用樹狀圖法求概率.

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在平面直角坐標系中,菱形OBCD的邊OB在x軸上,反比例函數(shù)y= (x>0)的圖象經(jīng)過菱形對角線的交點A,且與邊BC交于點F,點A的坐標為(4,2).則點F的坐標是

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,四邊形ABCD為平行四邊形,延長AD到E,使DE=AD,連接EB,EC,DB,添加一個條件,不能使四邊形DBCE成為矩形的是(
A.AB=BE
B.BE⊥DC
C.∠ADB=90°
D.CE⊥DE

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某文具店購進一批紀念冊,每本進價為20元,出于營銷考慮,要求每本紀念冊的售價不低于20元且不高于28元,在銷售過程中發(fā)現(xiàn)該紀念冊每周的銷售量y(本)與每本紀念冊的售價x(元)之間滿足一次函數(shù)關(guān)系:當銷售單價為22元時,銷售量為36本;當銷售單價為24元時,銷售量為32本.
(1)請直接寫出y與x的函數(shù)關(guān)系式;
(2)當文具店每周銷售這種紀念冊獲得150元的利潤時,每本紀念冊的銷售單價是多少元?
(3)設(shè)該文具店每周銷售這種紀念冊所獲得的利潤為w元,將該紀念冊銷售單價定為多少元時,才能使文具店銷售該紀念冊所獲利潤最大?最大利潤是多少?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】計算下列各題
(1) ﹣1=
(2)2x2+3=7x.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】在四張編號為A,B,C,D的卡片(除編號外,其余完全相同)的正面分別寫上如圖所示正整數(shù)后,背面朝上,洗勻放好,現(xiàn)從中隨機抽取一張(不放回),再從剩下的卡片中隨機抽取一張.

(1)請用樹狀圖或列表的方法表示兩次抽取卡片的所有可能出現(xiàn)的結(jié)果(卡片用A,B,C,D表示);
(2)我們知道,滿足a2+b2=c2的三個正整數(shù)a,b,c成為勾股數(shù),求抽到的兩張卡片上的數(shù)都是勾股數(shù)的概率.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】計算下列各式
(1)2cos45°+sin30°cos60°+cos30°
(2)| ﹣5|+2cos30°+( 1+(9﹣ 0+

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在ABCD中,AB>AD,按以下步驟作圖:以點A為圓心,小于AD的長為半徑畫弧,分別交AB、AD于點E、F;再分別以點E、F為圓心,大于 EF的長為半徑畫弧,兩弧交于點G;作射線AG交CD于點H,則下列結(jié)論中不能由條件推理得出的是(
A.AG平分∠DAB
B.AD=DH
C.DH=BC
D.CH=DH

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在△ABC中,點D是BC的中點,點E、F分別是線段AD及其延長線上,且DE=DF,給出下列條件:①BE⊥EC;②BF∥EC;③AB=AC,從中選擇一個條件使四邊形BECF是菱形,并給出證明,你選擇的條件是___(只填寫序號).

查看答案和解析>>

同步練習冊答案