【題目】如圖,四邊形ABCD是邊長為6的正方形,點E在邊AB上,BE=4,過點E作EF∥BC,分別交BD、CD于G、F兩點.若M、N分別是DG、CE的中點,則MN的長為 ( )
A.3
B.
C.
D.4
【答案】C
【解析】解:取DF、CF中點K、H,連接MK、NH、CM,作MO⊥NH(如下圖).
∵四邊形ABCD是邊長為6的正方形,BE=4.
∴AE=DF=2,CF=BE=4.
∴△DGF∽△BGE
∴==.
∴GF=2,EF=4.
又∵M、N、K、H、都是中點,
∴MK=GF=1,NH=EF=3.KF=DF=1,FH=CF=2,
∴MK=OH=1.KH=MO=3
∴NO=2.
在Rt△MON中,
∴MN= = = .
所以答案是C.
【考點精析】掌握勾股定理的概念和三角形中位線定理是解答本題的根本,需要知道直角三角形兩直角邊a、b的平方和等于斜邊c的平方,即;a2+b2=c2;連接三角形兩邊中點的線段叫做三角形的中位線;三角形中位線定理:三角形的中位線平行于三角形的第三邊,且等于第三邊的一半.
科目:初中數(shù)學 來源: 題型:
【題目】如圖,AB是⊙O的直徑,點C、D為半圓O的三等分點,過點C作CE⊥AD,交AD的延長線于點E.
(1)求證:CE為⊙O的切線;
(2)判斷四邊形AOCD的形狀,并說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,等腰 , , , 于點 ,點 是 延長線上一點,點 是線段 上一點, ,
下面結(jié)論:
① ;
② 是等邊三角形;
③ ;
④ .
其中正確的是( ).
A.②③
B.①②④
C.③④
D.①②③④
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在△ABC中,AB=AC,以AB為直徑的⊙O交BC于點D,過點D作DE⊥AC于點E.
(1)求證:DE是⊙O的切線.
(2)若∠B=30°,AB=8,求DE的長.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在矩形ABCD中,AB=4,AD=6,點F是AB的中點,E為BC邊上一點,且EF⊥ED,連結(jié)DF,M為DF的中點,連結(jié)MA,ME.若AM⊥ME,則AE的長為( )
A.5
B.
C.
D.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖:矩形ABCD的頂點B、C在x軸的正半軸上,A、D在拋物線上,矩形的頂點均為動點,且矩形在拋物線與軸圍成的區(qū)域里。
(1)設A點的坐標為(, ),試求矩形周長關(guān)于變量的函數(shù)表達式;
(2)是否存在這樣的矩形,它的周長為9,試證明你的結(jié)論。
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com