下列四組線段中,可以構(gòu)成直角三角形的是(   )
A.4,4,6B.5,12,13 C.6,6,6 D.6,24,25
B

試題分析:根據(jù)勾股定理的逆定理依次分析各項即可判斷.
A、,C、,D、,故錯誤;
B、,可以構(gòu)成直角三角形,本選項正確.
點(diǎn)評:解答本題的關(guān)鍵是熟練掌握勾股定理的逆定理:若一個三角形有兩條邊的平方和等于第三邊的平方,那么這個三角形是直角三角形.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源:不詳 題型:填空題

如圖,在△ABC中,若M為BC的中點(diǎn),AN平分∠BAC,AN⊥BN于點(diǎn)N,且AB=10,AC=16,則MN的長為______。
 

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:單選題

Rt△ABC中,已知∠C=90°, ∠A=30°,BD是∠B的平分線,AC=18,則BD的值為(  )
A.4.9B.9C.12D.15

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:單選題

下列各組數(shù)中,能構(gòu)成直角三角形的一組是(    )
A.2,2,B.1,,2
C.4,5,6D.6,8,12

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

已知:△ABC中,∠A=90°,AB=AC,D為BC的中點(diǎn),

(1)如圖,E,F(xiàn)分別是AB,AC上的點(diǎn),且BE=AF,求證:△DEF為等腰直角三角形;
(2)若E,F(xiàn)分別為AB,CA延長線上的點(diǎn),仍有BE=AF,其他條件不變,那么,△DEF是否仍為等腰直角三角形?證明你的結(jié)論.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:單選題

如圖,若△ABC≌△ADE,則下列結(jié)論不正確的是(   )
A.AB=ADB.AC=ADC.AC=AED.BC=DE

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:單選題

如圖,若△≌△,,,則∠等于( 。
A.20°B.30°C.40°D.150°

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:填空題

如圖所示,將正方邊形放在直角坐標(biāo)系中,中心與坐標(biāo)原點(diǎn)重合,若A點(diǎn)的坐示為,則點(diǎn)C的坐標(biāo)為            。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

感知:利用圖形中面積的等量關(guān)系可以得到某些數(shù)學(xué)公式.例如,根據(jù)圖①甲,我們可以得到兩數(shù)和的平方公式:,根據(jù)圖①乙能得到的數(shù)學(xué)公式是                  

拓展:圖②是由四個完全相同的直角三角形拼成的一個大正方形,直角三角形的兩直角邊長為,,斜邊長為,利用圖②中的面積的等量關(guān)系可以得到直角三角形的三邊長之間的一個重要公式,這個公式是:               ,這就是著名的勾股定理.請利用圖②證明勾股定理.
應(yīng)用:我國古代數(shù)學(xué)家趙爽的“勾股圓方圖”是由四個完全相同的直角三角形與中間的一個小正方形拼成一個大正方形(如圖③所示).如果大正方形的面積是17,小正方形的面積是1,直角三角形的兩直角邊長分別為,那么的值是         

查看答案和解析>>

同步練習(xí)冊答案