如圖,Rt△PMN中,∠P=90°,PM=PN,MN=8cm,矩形ABCD的長和寬分別為8cm和2cm,C點和M點重合,BC和MN在一條直線上.令Rt△PMN不動,矩形ABCD沿MN所在直線向右以每秒1cm的速度移動(如圖2),直到C點與N點重合為止.設(shè)移動x秒后,矩形ABCD與△PMN重疊部分的面積為ycm2.求y與x之間的函數(shù)關(guān)系式.
在Rt△PMN中,
∵PM=PN,∠P=90°
∴∠PMN=∠PNM=45°,
延長AD分別交PM,PN于點G、H.
過G作GF⊥MN于F,過H作HT⊥MN于T.
∵DC=2cm,
∴MF=GF=2cm,TN=HT=2cm.
∵MN=8cm,
∴MT=6cm.
因此,矩形ABCD以每秒1cm的速度由開始向右移動到停止,和Rt△PMN重疊部分的形狀可分為下列三種情況:
(1)當(dāng)C點由M點運動到F點的過程中(0≤x≤2),如圖①所示,
設(shè)CD與PM交于點E,則重疊部分圖形是Rt△MCE,且MC=EC=x.
∴y=
1
2
MC•EC=
1
2
x2(0≤x≤2).

(2)當(dāng)C點由F點運動到T點的過程中(2<x≤6),如圖②所示,重疊部分圖形是直角梯形MCDG.
∵MC=x,MF=2,
∴FC=DG=x-2,且DC=2,
∴y=
1
2
(MC+GD)•DC=2x-2(2<x≤6).
(3)當(dāng)C點由T點運動到N點的過程中(6<x≤8),如圖③所示,

設(shè)CD與PN交于點Q,則重疊部分圖形是五邊形MCQHG.
∵MC=x,
∴CN=CQ=8-x,且DC=2,
∴y=
1
2
(MN+GH)•DC-
1
2
CN×CQ
=-
1
2
(8-x)2+12(6<x≤8).
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,以邊長為1的正方形ABCO的兩邊OA、OC所在直線為軸建立坐標系,點O為原點.
(1)求以A為頂點,且經(jīng)過點C的拋物線解析式;
(2)求(1)中的拋物線與對角線OB交于點D的坐標.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:填空題

拋物線y=x2+bx+c經(jīng)過點(0,3)和(-1,0),那么拋物線的解析式是______.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

已知二次函數(shù)圖象的頂點坐標為M(3,-2),且與y軸交于N(0,
5
2
).
(1)求該二次函數(shù)的解析式,并用列表、描點畫出它的圖象;
(2)若該圖象與x軸交于A、B兩點,在對稱軸右側(cè)的圖象上存在點C,使得△ABC的面積等于12,求出C點的坐標.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

已知二次函數(shù)圖象的頂點在原點O,對稱軸為y軸.一次函數(shù)y=kx+1的圖象與二次函數(shù)的圖象交于A,B兩點(A在B的左側(cè)),且A點坐標為(-4,4).平行于x軸的直線l過(0,-1)點.
(1)求一次函數(shù)與二次函數(shù)的解析式;
(2)判斷以線段AB為直徑的圓與直線l的位置關(guān)系,并給出證明;
(3)把二次函數(shù)的圖象向右平移2個單位,再向下平移t個單位(t>0),二次函數(shù)的圖象與x軸交于M,N兩點,一次函數(shù)圖象交y軸于F點.當(dāng)t為何值時,過F,M,N三點的圓的面積最小,最小面積是多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

已知二次函數(shù)的圖象經(jīng)過點A(1,0)且與直線y=
3
4
x+3相交于B、C兩點,點B在x軸上,點C在y軸上.
(1)求二次函數(shù)的解析式及函數(shù)的頂點坐標
(2)如果P(x,y)是線段BC上的動點,O為坐標原點,試求△PAB的面積S與x之間的函數(shù)關(guān)系式,并寫出自變量取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,拋物線y=x2+4x與x軸分別相交于點B、O,它的頂點為A,連接AB,AO.
(1)求點A的坐標;
(2)以點A、B、O、P為頂點構(gòu)造直角梯形,請求一個滿足條件的頂點P的坐標.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

某養(yǎng)殖專業(yè)戶計劃利用房屋的一面墻修造如圖所示的長方體水池,培育不同品種的魚苗.他已準備可以修高為3m.長30m的水池墻的材料,圖中EF與房屋的墻壁互相垂直,設(shè)AD的長為xm.(不考慮水池墻的厚度)
(1)請直接寫出AB的長(用含有x的代數(shù)式表示);
(2)試求水池的總?cè)莘eV與x的函數(shù)關(guān)系式,并寫出x的取值范圍;
(3)如果房屋的墻壁可利用的長度為10.5m,請利用函數(shù)圖象與性質(zhì)求V的最大值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

農(nóng)民張大伯為了致富奔小康,大力發(fā)展家庭養(yǎng)殖業(yè).他準備用40m長的木欄(虛線部分)圍一個矩形的羊圈,為了節(jié)約材料同時要使矩形的面積最大,他利用了自家房屋一面長25m的墻,設(shè)計了如圖一個矩形ABCD的羊圈.
(1)請你求出張大伯矩形羊圈的面積;
(2)你認為該方案是否合理?為什么?

查看答案和解析>>

同步練習(xí)冊答案