【題目】如圖,△ABC內(nèi)接于⊙O,∠B=60°,CD是⊙O的直徑,點(diǎn)P是CD延長(zhǎng)線上的一點(diǎn),且AP=AC.

(1)求證:PA是⊙O的切線;
(2)若AB=4+ ,BC=2 ,求⊙O的半徑.

【答案】
(1)證明:連接OA,

∵∠B=60°,

∴∠AOC=2∠B=120°,

又∵OA=OC,

∴∠OAC=∠OCA=30°,

又∵AP=AC,

∴∠P=∠ACP=30°,

∴∠OAP=∠AOC﹣∠P=90°,

∴OA⊥PA,

∴PA是⊙O的切線


(2)解:過(guò)點(diǎn)C作CE⊥AB于點(diǎn)E.

在Rt△BCE中,∠B=60°,BC=2

∴BE= BC= ,CE=3,

∵AB=4+ ,

∴AE=AB﹣BE=4,

∴在Rt△ACE中,AC= =5,

∴AP=AC=5.

∴在Rt△PAO中,OA= ,

∴⊙O的半徑為


【解析】(1)連接OA,根據(jù)圓周角定理求出∠AOC,再由OA=OC得出∠ACO=∠OAC=30°,再由AP=AC得出∠P=30°,繼而由∠OAP=∠AOC﹣∠P,可得出OA⊥PA,從而得出結(jié)論;(2)過(guò)點(diǎn)C作CE⊥AB于點(diǎn)E.在Rt△BCE中,∠B=60°,BC=2 ,于是得到BE= BC= ,CE=3,根據(jù)勾股定理得到AC= =5,于是得到AP=AC=5.解直角三角形即可得到結(jié)論.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,⊙O的直徑AB=4,∠ABC=30°,BC交⊙O于D,D是BC的中點(diǎn).

(1)求BC的長(zhǎng);
(2)過(guò)點(diǎn)D作DE⊥AC,垂足為E,求證:直線DE是⊙O的切線.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】閱讀下面材料:
在學(xué)習(xí)《圓》這一章時(shí),老師給同學(xué)們布置了一道尺規(guī)作圖題:
尺規(guī)作圖:過(guò)圓外一點(diǎn)作圓的切線。
已知:P為⊙O外一點(diǎn)。
求作:經(jīng)過(guò)點(diǎn)P的⊙O的切線

小敏的作法如下:
如圖:
①連接OP,作線段OP的垂直平分線MN交OP于C
②以點(diǎn)C為圓心,CO的長(zhǎng)為半徑作圓,交⊙O 于A,B兩點(diǎn)
③作直線PA,PB所以直線PA,PB就是所求的切線

老師認(rèn)為小敏的作法正確.
請(qǐng)回答:連接OA,OB后,可證∠OAP=∠OBP=90°,其依據(jù)是;由此可證明直線PA,PB都是⊙O的切線,其依據(jù)是

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】石頭剪子布,又稱“猜丁殼”,是一種起源于中國(guó)流傳多年的猜拳游戲.游戲時(shí)的各方每次用一只手做“石頭”、“剪刀”、“布”三種手勢(shì)中的一種,規(guī)定“石頭”勝“剪刀”、“剪刀”勝“布”、“布”勝“石頭”.兩人游戲時(shí),若出現(xiàn)相同手勢(shì),則不分勝負(fù)游戲繼續(xù),直到分出勝負(fù),游戲結(jié)束.三人游戲時(shí),若三種手勢(shì)都相同或都不相同,則不分勝負(fù)游戲繼續(xù);若出現(xiàn)兩人手勢(shì)相同,則視為一種手勢(shì)與第三人所出手勢(shì)進(jìn)行對(duì)決,此時(shí),參照兩人游戲規(guī)則.例如甲、乙二人同時(shí)出石頭,丙出剪刀,則甲、乙獲勝.假定甲、乙、丙三人每次都是隨機(jī)地做這三種手勢(shì),那么:
(1)請(qǐng)你用畫樹(shù)狀圖或列表的方式,求出一次游戲中甲、乙兩人出第一次手勢(shì)時(shí),不分勝負(fù)的概率;
(2)請(qǐng)直接寫出一次游戲中甲、乙、丙三人出第一次手勢(shì)時(shí),不分勝負(fù)的概率.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】為應(yīng)對(duì)越來(lái)越嚴(yán)重的霧霾天氣,孔明同學(xué)所在班級(jí)的家長(zhǎng)委員會(huì),準(zhǔn)備為該班集資捐贈(zèng)一臺(tái)大型的空氣凈化機(jī),現(xiàn)知道某商場(chǎng)將該型號(hào)的空氣凈化機(jī)按標(biāo)價(jià)的八折出售,每臺(tái)空氣凈化機(jī)仍可獲利,已知該型號(hào)客氣凈化機(jī)的進(jìn)價(jià)為元.

求該空氣凈化機(jī)的標(biāo)價(jià).

若該班有名學(xué)生,則該班每位學(xué)生家長(zhǎng)應(yīng)平均捐助多少元.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】一股民上星期五買進(jìn)某公司股票股,每股元,下表為本周內(nèi)每日該股票的漲跌情況(單位:元)

星期

每股漲跌

星期三收盤時(shí),每股是________元;

本周內(nèi)每股最高價(jià)為________元,每股最低價(jià)為________元;

已知該股民買進(jìn)股票時(shí)付了的手續(xù)費(fèi),賣出時(shí)還需付成交額的手續(xù)費(fèi)和的交易銳,如果該股民在星期五收盤前將全部股票賣出,他的收益情況如何?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,一個(gè)寬為2cm的刻度尺在圓形光盤上移動(dòng),當(dāng)刻度尺的一邊與光盤相切時(shí),另一邊與光盤邊緣兩個(gè)交點(diǎn)處的讀數(shù)恰好是“2”和“10”(單位:cm),求該光盤的直徑是多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,兩直線AB,CD相交于點(diǎn)O,已知OE平分BOD,且AOC:AOD=3:7,

1DOE的度數(shù);

2若OFOE,求COF的度數(shù)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】(2016.鎮(zhèn)江)如圖,AD、BC相交于點(diǎn)O,AD=BC,C=D=90°.

(1)若∠ABC=35°,求∠CAO的度數(shù);

(2)求證:CO=DO

查看答案和解析>>

同步練習(xí)冊(cè)答案