如圖,已知拋物線y=x2+bx+c經(jīng)過點(1,-5)和(-2,4)
(1)求這條拋物線的解析式;
(2)設(shè)此拋物線與直線y=x相交于點A,B(點B在點A的右側(cè)),平行于y軸的直線x=m(0<m<+1)與拋物線交于點M,與直線y=x交于點N,交x軸于點P,求線段MN的長(用含m的代數(shù)式表示);
(3)在條件(2)的情況下,連接OM、BM,是否存在m的值,使△BOM的面積S最大?若存在,請求出m的值;若不存在,請說明理由.
【答案】分析:(1)利用待定系數(shù)法,將A,B的坐標(biāo)代入解析式即可求得二次函數(shù)的解析式;
(2)因為點B是y=x與y=x2-2x-4的交點,根據(jù)題意可求得N,M的坐標(biāo),則可表示出MN的長,通過縱坐標(biāo)的絕對值的和求得;
(3)把△BOM分成兩個△OMN與△BMN,把MN作為兩個三角形的底,通過點B,P的縱坐標(biāo)表示出兩個三角形的高即可求得三角形的面積.
解答:解:(1)由題意把點(1,-5)、(-2,4)代入y=x2+bx+c得:
,
解得b=-2,c=-4,(3分)
∴此拋物線解析式為:y=x2-2x-4;

(2)由題意得:
∴x2-3x-4=0,
解得:x=4或x=-1(舍),
∴點B的坐標(biāo)為(4,4),
將x=m代入y=x條件得y=m,
∴點N的坐標(biāo)為(m,m),
同理點M的坐標(biāo)為(m,m2-2m-4),點P的坐標(biāo)為(m,0),
∴PN=|m|,MP=|m2-2m-4|,
∵0<m<+1,
∴MN=PN+MP=-m2+3m+4;

(3)作BC⊥MN于點C,
則BC=4-m,OP=m,
S=MN•OP+MN•BC,
=2(-m2+3m+4),
=-2(m-2+12,(11分)
∵-2<0,
∴當(dāng)m-=0,則m=時,S有最大值.
點評:此題考查了待定系數(shù)法求解析式,還考查了三角形的面積,要注意將三角形分解成兩個三角形求解;
還要注意求最大值可以借助于二次函數(shù).
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

如圖,已知拋物線與x軸交于A(-1,0)、B(4,0)兩點,與y軸交于點精英家教網(wǎng)C(0,3).
(1)求拋物線的解析式;
(2)求直線BC的函數(shù)解析式;
(3)在拋物線上,是否存在一點P,使△PAB的面積等于△ABC的面積,若存在,求出點P的坐標(biāo),若不存在,請說明理由.
(4)點Q是直線BC上的一個動點,若△QOB為等腰三角形,請寫出此時點Q的坐標(biāo).(可直接寫出結(jié)果)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,已知拋物線y=ax2+bx+c(a≠0)的對稱軸為x=1,且拋物線經(jīng)過A(-1,0)精英家教網(wǎng)、C(0,-3)兩點,與x軸交于另一點B.
(1)求這條拋物線所對應(yīng)的函數(shù)關(guān)系式;
(2)在拋物線的對稱軸x=1上求一點M,使點M到點A的距離與到點C的距離之和最小,并求出此時點M的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2013•衡陽)如圖,已知拋物線經(jīng)過A(1,0),B(0,3)兩點,對稱軸是x=-1.
(1)求拋物線對應(yīng)的函數(shù)關(guān)系式;
(2)動點Q從點O出發(fā),以每秒1個單位長度的速度在線段OA上運動,同時動點M從O點出發(fā)以每秒3個單位長度的速度在線段OB上運動,過點Q作x軸的垂線交線段AB于點N,交拋物線于點P,設(shè)運動的時間為t秒.
①當(dāng)t為何值時,四邊形OMPQ為矩形;
②△AON能否為等腰三角形?若能,求出t的值;若不能,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,已知拋物線y=ax2+bx+c(a≠0)的對稱軸為直線x=1,且拋物線經(jīng)過A(-1,0)、C(0,-3)兩點,與x軸交于另一點B.
(1)求這條拋物線所對應(yīng)的函數(shù)關(guān)系式;
(2)點P是拋物線對稱軸上一點,若△PAB∽△OBC,求點P的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,已知拋物線y=ax2+bx+c的頂點是(-1,-4),且與x軸交于A、B(1,0)兩點,交y軸于點C;
(1)求此拋物線的解析式;
(2)①當(dāng)x的取值范圍滿足條件
-2<x<0
-2<x<0
時,y<-3;
     ②若D(m,y1),E(2,y2)是拋物線上兩點,且y1>y2,求實數(shù)m的取值范圍;
(3)直線x=t平行于y軸,分別交線段AC于點M、交拋物線于點N,求線段MN的長度的最大值;
(4)若以拋物線上的點P為圓心作圓與x軸相切時,正好也與y軸相切,求點P的坐標(biāo).

查看答案和解析>>

同步練習(xí)冊答案