【題目】 如圖,在菱形中,點(diǎn)在對(duì)角線上,且,是的外接圓.
(1)求證:是的切線;
(2)若求的半徑.
【答案】(1)證明見(jiàn)解析;(2).
【解析】
試題分析:(1)連結(jié)OP、OA,OP交AD于E,由PA=PD得弧AP=弧DP,根據(jù)垂徑定理的推理得OP⊥AD,AE=DE,則∠1+∠OPA=90°,而∠OAP=∠OPA,所以∠1+∠OAP=90°,再根據(jù)菱形的性質(zhì)得∠1=∠2,所以∠2+∠OAP=90°,然后根據(jù)切線的判定定理得到直線AB與⊙O相切;
(2)連結(jié)BD,交AC于點(diǎn)F,根據(jù)菱形的性質(zhì)得DB與AC互相垂直平分,則AF=4,tan∠DAC=,得到DF=2,根據(jù)勾股定理得到AD==2,求得AE=,設(shè)⊙O的半徑為R,則OE=R﹣,OA=R,根據(jù)勾股定理列方程即可得到結(jié)論.
試題解析:(1)連結(jié)OP、OA,OP交AD于E,如圖,
∵PA=PD,
∴弧AP=弧DP,
∴OP⊥AD,AE=DE,
∴∠1+∠OPA=90°,
∵OP=OA,
∴∠OAP=∠OPA,
∴∠1+∠OAP=90°,
∵四邊形ABCD為菱形,
∴∠1=∠2,
∴∠2+∠OAP=90°,
∴OA⊥AB,
∴直線AB與⊙O相切;
(2)連結(jié)BD,交AC于點(diǎn)F,如圖,
∵四邊形ABCD為菱形,
∴DB與AC互相垂直平分,
∵AC=8,tan∠BAC=,
∴AF=4,tan∠DAC==,
∴DF=2,
∴AD==2,
∴AE=,
在Rt△PAE中,tan∠1==,
∴PE=,
設(shè)⊙O的半徑為R,則OE=R﹣,OA=R,
在Rt△OAE中,∵OA2=OE2+AE2,
∴R2=(R﹣)2+()2,
∴R=,
即⊙O的半徑為.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】下列長(zhǎng)度的三條線段能組成三角形的是( )
A.5cm2cm3cmB.5cm2cm2cm C.5cm2cm4cm D.5cm12cm6cm
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】甲、乙兩運(yùn)動(dòng)員的射擊成績(jī)(靶心為10環(huán))統(tǒng)計(jì)如下表(不完全):
次數(shù) 運(yùn)動(dòng)員 環(huán)數(shù) | 1 | 2 | 3 | 4 | 5 |
甲 | 10 | 8 | 9 | 10 | 8 |
乙 | 10 | 9 | 9 | a | b |
某同學(xué)計(jì)算出了甲的成績(jī)平均數(shù)是9,方差是,請(qǐng)作答:
(1)在圖中用折線統(tǒng)計(jì)圖將甲運(yùn)動(dòng)員的成績(jī)表示出來(lái);
(2)若甲、乙的射擊成績(jī)平均數(shù)都一樣,則 ;
(3)在(2)的條件下,當(dāng)甲比乙的成績(jī)較穩(wěn)定時(shí),請(qǐng)列舉出的所有可能取值,并說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在四邊形ABCD中,AB=AD=4,∠A=60°,BC=4 ,CD=8.
(1)求∠ADC的度數(shù);
(2)求四邊形ABCD的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在開(kāi)展“經(jīng)典閱讀”活動(dòng)中,某學(xué)校為了解全校學(xué)生利用課外時(shí)間閱讀的情況,學(xué)校團(tuán)委隨機(jī)抽取若干名學(xué)生,調(diào)查他們一周的課外閱讀時(shí)間,并根據(jù)調(diào)查結(jié)果繪制了如下尚不完整的統(tǒng)計(jì)表.根據(jù)圖表信息,解答下列問(wèn)題:
頻率分布表
閱讀時(shí)間 (小時(shí)) | 頻數(shù) (人) | 頻率 |
|
|
|
|
| |
|
| |
|
| |
|
| |
合計(jì) |
|
|
頻數(shù)分布直方圖
(1)填空: , , , ;
(2)將頻數(shù)分布直方圖補(bǔ)充完整(畫(huà)圖后請(qǐng)標(biāo)注相應(yīng)的頻數(shù));
(3)若該校由名學(xué)生,請(qǐng)根據(jù)上述調(diào)查結(jié)果,估算該校學(xué)生一周的課外閱讀時(shí)間不足三小時(shí)的人數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,△ABC的三個(gè)頂點(diǎn)分別為A(﹣1,﹣2),B(﹣2,﹣4),C(﹣4,﹣1).
(1)把△ABC向上平移3個(gè)單位后得到△A1B1C1,請(qǐng)畫(huà)出△A1B1C1并寫(xiě)出點(diǎn)B1的坐標(biāo);
(2)已知點(diǎn)A與點(diǎn)A2(2,1)關(guān)于直線l成軸對(duì)稱,請(qǐng)畫(huà)出直線l及△ABC關(guān)于直線l對(duì)稱的△A2B2C2,并直接寫(xiě)出直線l的函數(shù)解析式.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖甲,直線y=﹣x+3與x軸、y軸分別交于點(diǎn)B、點(diǎn)C,經(jīng)過(guò)B、C兩點(diǎn)的拋物線y=x2+bx+c與x軸的另一個(gè)交點(diǎn)為A,頂點(diǎn)為P.
(1)求該拋物線的解析式;
(2)在該拋物線的對(duì)稱軸上是否存在點(diǎn)M,使以C,P,M為頂點(diǎn)的三角形為等腰三角形?若存在,請(qǐng)直接寫(xiě)出所符合條件的點(diǎn)M的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由;
(3)當(dāng)0<x<3時(shí),在拋物線上求一點(diǎn)E,使△CBE的面積有最大值(圖乙、丙供畫(huà)圖探究).
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com