精英家教網 > 初中數學 > 題目詳情

【題目】如圖,在平面直角坐標系中,正方形OABC的頂點Ay軸正半軸上,頂點Cx軸正半軸上,拋物線a<0)的頂點為D,且經過點A、B.若△ABD為等腰直角三角形,則a的值為___________

【答案】-1

【解析】分析:拋物線的對稱軸方程為即點的橫坐標為1,ABD為等腰直角三角形,則點的橫坐標為2,正方形的邊長為2,進而求出點的縱坐標為2+1=3,把點代入拋物線解析式,即可求出的值.

詳解:拋物線的對稱軸方程為

即點的橫坐標為1,

ABD為等腰直角三角形,則點的橫坐標為2,正方形的邊長為2,

,

代入拋物線解析式得:解得:

故答案為:

點睛:屬于二次函數綜合體,考查待定系數法求函數解析式,正方形的性質,二次函數的圖象與性質等,重點掌握待定系數法.

練習冊系列答案
相關習題

科目:初中數學 來源: 題型:

【題目】探究

(1)已知如圖1,若ABCD,P為平行線內的一點請你判斷∠B+P+D= 度,并說明理由.

(2)如圖2,若ABCD ,P1、P2為平行線內的兩個點,請求出∠B+P1+P2+D= (不需要說明理由)

(3)如圖3,如此類推若ABCDP1、、P2、P3、P4……Pn為平行線內的n個點,請求出∠B+P1+P2+P3+……+Pn-1+Pn+D= (不需要說明理由)

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】我們知道:有兩條邊相等的三角形叫做等腰三角形。類似地,我們定義:至少有一組對邊相等的四邊形叫做等對邊四邊形.

1)請你寫出一個等對邊四邊形的名稱;

2)如圖,在ABC中,點DE分別在AB、AC上,設CD、BE相交于點O,若∠A=50°.請寫出圖中其余等于50°的角,并猜想圖中哪個四邊形為等對邊四邊形(不需證明);

3)在中,如果∠A是不等于50°的銳角,點D、E分別在AB、AC上,且.探究:滿足上述條件的圖形中是否存在等對邊四邊形,并證明你的結論.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】我們新定義一種三角形:若一個三角形中存在兩邊的平方差等于第三邊上高的平方,則稱這個三角形為勾股高三角形,兩邊交點為勾股頂點.

特例感知

①等腰直角三角形 勾股高三角形(請?zhí)顚?/span>或者不是);

②如圖1,已知ABC為勾股高三角形,其中C為勾股頂點,CDAB邊上的高.若,試求線段CD的長度.

深入探究

如圖2,已知ABC為勾股高三角形,其中C為勾股頂點且CACBCDAB邊上的高.試探究線段ADCB的數量關系,并給予證明;

推廣應用

如圖3,等腰ABC為勾股高三角形,其中CDAB邊上的高,過點DBC邊引平行線與AC邊交于點E.若,試求線段DE的長度.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖1,已知拋物線y=x2+2x﹣3x軸相交于A,B兩點,與y軸交于點C,D為頂點.

1)求直線AC的解析式和頂點D的坐標;

2)已知E0 ),點P是直線AC下方的拋物線上一動點,作PRAC于點R,當PR最大時,有一條長為的線段MN(點M在點N的左側)在直線BE上移動,首尾順次連接AM、N、P構成四邊形AMNP,請求出四邊形AMNP的周長最小時點N的坐標;

3)如圖2,過點DDFy軸交直線AC于點F,連接AD,Q點是線段AD上一動點,將DFQ沿直線FQ折疊至D1FQ,是否存在點Q使得D1FQAFQ重疊部分的圖形是直角三角形?若存在,請求出AQ的長;若不存在,請說明理由.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,Rt△ABC中,ACB=90°AC=6BC=8,DAB上一動點,過點DDEAC于點E,DFBC于點F,連接EF,則線段EF的最小值是(  )

A. 4B. 4.6C. 4.8D. 5

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖所示,將矩形ABCD沿對角線BD對折,使點C落在處,連接BAD于點E,AB=4 BC=6.

求證: (1)AE=E; (2)△EBD面積.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,直線mn,RtABC的頂點A在直線n上,∠C90°,ABCB分別交直線m于點D和點E,且DBDE,若∠165°,則∠BDE的度數為( 。

A.115°B.120°C.130°D.145°

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】設a,b是任意兩個不等實數,我們規(guī)定:滿足不等式a≤x≤b的實數x的所有取值的全體叫做閉區(qū)間,表示為[a,b].對于一個函數,如果它的自變量x與函數值y滿足:當m≤x≤n時,有m≤y≤n,我們就稱此函數是閉區(qū)間[m,n]上的“閉函數”.如函數y=﹣x+4,當x=1時,y=3;當x=3時,y=1,即當1≤x≤3時,恒有1≤y≤3,所以說函數y=﹣x+4是閉區(qū)間[1,3]上的“閉函數”,同理函數y=x也是閉區(qū)間[1,3]上的“閉函數”.

(1)反比例函數y=是閉區(qū)間[1,2018]上的“閉函數”嗎?請判斷并說明理由;

(2)如果已知二次函數y=x2﹣4x+k是閉區(qū)間[2,t]上的“閉函數”,求k和t的值;

3)如果(2)所述的二次函數的圖象交y軸于C點,A為此二次函數圖象的頂點,B為直線x=1上的一點,當ABC為直角三角形時,寫出點B的坐標.

查看答案和解析>>

同步練習冊答案