【題目】2019910日是我國第35個教師節(jié),某中學德育處發(fā)起了感恩小學恩師的活動,德育處要求每位同學從以下三種方式中選擇一種方式表達感恩:A.信件感恩,B.信息感恩,C.當面感恩.為了解同學們選擇以上三種感恩方式的情況,德育處隨機對本校部分學生進行了調查,井根據(jù)調查結果繪制成了如下兩幅不完整的統(tǒng)計圖.

根據(jù)圖中信息,解答下列問題:

1)扇形統(tǒng)計圖中C部分所對應的扇形圓心角的度數(shù)為________,并補全條形統(tǒng)計圖;

2)本次調查在選擇A方式的學生中有兩名男生和兩名女生來自于同一所小學,德育處打算從他們四個人中選擇兩位在主題升旗儀式上發(fā)言,請用畫樹狀圖或列表的方法求恰好選到一男一女的概率.

【答案】1,圖詳見解析;(2

【解析】

1)先根據(jù)選擇A方式的人數(shù)和所在百分比即可求出調查總人數(shù),然后計算出選擇C方式的人數(shù),即可求出選擇C方式所占百分率,最后乘360°即可;

2)根據(jù)題意,畫出樹狀圖,然后根據(jù)樹狀圖和概率公式求概率即可.

解:(1)總人數(shù):

2)畫樹狀圖如下所示:

由樹狀圖可知:共有12種等可能的結果,其中恰好選到一男一女共有8種可能。

∴恰好選到一男一女的概率為:

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】在平面直角坐標系中,四邊形是矩形,點,點,點.以點為中心,順時針旋轉矩形,得到矩形,點的對應點分別為,記旋轉角為

(1)如圖①,當時,求點的坐標;

(2)如圖②,當點落在的延長線上時,求點的坐標;

(3)當點落在線段上時,求點的坐標(直接寫出結果即可).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某校為了了解九年級學生體育測試成績情況,以九年級(1)班學生的體育測試成績?yōu)闃颖荆碆、C、D四個等級進行統(tǒng)計,并將統(tǒng)計結果繪制如下兩幅統(tǒng)計圖,請你結合圖中所給信息解答下列問題:(說明:A級:90分﹣100分;B級:75分﹣89分;C級:60分~74分;D級:60分以下)

(1)求出D級學生的人數(shù)占全班總人數(shù)的百分比;

(2)求出扇形統(tǒng)計圖(圖2)中C級所在的扇形圓心角的度數(shù);

(3)若該校九年級學生共有500人,請你估計這次考試中A級和B級的學生共有多少人?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在平面直角坐標系xOy中,△OA1B1是等邊三角形,點B1的坐標是(20),反比例函數(shù)y的圖象經過點A1

1)求反比例函數(shù)的解析式.

2)如圖,以B1為頂點作等邊三角形B1A2B2,使點B2x軸上,點A2在反比例函數(shù)y的圖象上.若要使點B2在反比例函數(shù)y的圖象上,需將△B1A2B2向上平移多少個單位長度?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知,點邊上,,邊相交于點

1)求證:;

2)如果,求證:

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】為加快5G網絡建設,某移動通信公司在一個坡度為21的山腰上建了一座5G信號通信塔AB,在距山腳C處水平距離39米的點D處測得通信塔底B處的仰角是35°,測得通信塔頂A處的仰角是49°,(參考數(shù)據(jù):sin35°≈0.57,tan35°≈0.70,sin49°≈0.75,tan49°≈1.15),則通信塔AB的高度約為( )

A.27B.31C.48D.52

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖1,在平面直角坐標系xOy中,雙曲線與直線yax+ba≠0)交于A、B兩點,直線AB分別交x軸、y軸于C、D兩點,Ex軸上一點.已知OAOCOE,A點坐標為(3,4).

1)將線段OE沿x軸平移得線段O′E′(如圖1),在移動過程中,是否存在某個位置使|BO′AE′|的值最大?若存在,求出|BO′AE′|的最大值及此時點O′的坐標;若不存在,請說明理由;

2)將直線OA沿射線OE平移,平移過程中交的圖象于點MM不與A重合),交x軸于點N(如圖3).在平移過程中,是否存在某個位置使MNE為以MN為腰的等腰三角形?若存在,求出M的坐標;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知AB的直徑,點PBA的延長線上,PD于點D,過點B,交PD的延長線于點C,連接AD并延長,交BE于點E

(Ⅰ)求證:AB=BE;

(Ⅱ)連結OC,如果PD=2,∠ABC=60°,求OC的長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】在RtABC中,ACB=90°,BE平分ABC,D是邊AB上一點,以BD為直徑的O經過點E,且交BC于點F.

(1)求證:AC是O的切線;

(2)若BF=6,O的半徑為5,求CE的長.

查看答案和解析>>

同步練習冊答案