【題目】如圖,∠AOB=60°,C是BO延長(zhǎng)線上一點(diǎn),OC=12cm,動(dòng)點(diǎn)P從點(diǎn)C出發(fā)沿CB以2cm/s的速度移動(dòng),動(dòng)點(diǎn)Q從點(diǎn)O出發(fā)沿OA以1cm/s的速度移動(dòng),如果點(diǎn)P、Q同時(shí)出發(fā),用t(s)表示移動(dòng)的時(shí)間,當(dāng)t=_____s時(shí),△POQ是等腰三角形.
【答案】或10
【解析】
根據(jù)等腰三角形的判定,分兩種情況:(1)當(dāng)點(diǎn)P在線段OC上時(shí);(2)當(dāng)點(diǎn)P在CO的延長(zhǎng)線上時(shí).分別列式計(jì)算即可求.
解:分兩種情況:(1)當(dāng)點(diǎn)P在線段OC上時(shí),
設(shè)t時(shí)后△POQ是等腰三角形,
有OP=OC﹣CP=OQ,
即10﹣2x=x,
解得,x=s;
(2)當(dāng)點(diǎn)P在CO的延長(zhǎng)線上時(shí),此時(shí)經(jīng)過(guò)CO時(shí)的時(shí)間已用5s,
當(dāng)△POQ是等腰三角形時(shí),∵∠POQ=60°,
∴△POQ是等邊三角形,
∴OP=OQ,
即2(x﹣5)=x,
解得,x=10s
故答案為s或10s.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】等角轉(zhuǎn)化;如圖1,已知點(diǎn)A是BC外一點(diǎn),連結(jié)AB、AC,求∠BAC+∠B+∠C的度數(shù).
(1)閱讀并補(bǔ)充下面的推理過(guò)程
解:過(guò)點(diǎn)A作ED∥BC,
∴∠B=∠EAB,∠C= ( )
又∵∠EAB+∠BAC+∠DAC=180°
∴∠B+∠BAC+∠C=180°
從上面的推理過(guò)程中,我們發(fā)現(xiàn)平行線具有“等角轉(zhuǎn)化”的功能,將∠BAC、∠B、∠C“湊”在一起,得出角之間的關(guān)系,使問(wèn)題得以解決.
(2)如圖2,已知AB∥ED,求∠B+∠BCD+∠D的度數(shù)(提示:過(guò)點(diǎn)C作CF∥AB);
(3)如圖3,已知AB∥CD,點(diǎn)C在點(diǎn)D的右側(cè),∠ADC=80°,點(diǎn)B在點(diǎn)A的左側(cè),∠ABC=60°,BE平分∠ABC,DE平分∠ADC,BE、DE所在的直線交于點(diǎn)E,點(diǎn)E在兩條平行線AB與CD之間,求∠BED的度數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】閱讀下面材料,并解決有關(guān)問(wèn)題
我們知道:
|a|=
現(xiàn)在我們可以用這一結(jié)論來(lái)化解含有絕對(duì)值的代數(shù)式
如化簡(jiǎn)代數(shù)式|x+1|+|x﹣2|時(shí),可令x+1=0和x﹣2=0,分別求得x=﹣1和x=2(稱﹣1,2分別為|x+1|和|x﹣2|的零點(diǎn)值)
在實(shí)數(shù)范圍內(nèi),零點(diǎn)值x=﹣1和x=2可將全體實(shí)數(shù)分成不重復(fù)且不遺漏的如下三種情況:
(1)x<﹣1(2)﹣1≤x<2(3)x≥2
從而化簡(jiǎn)代數(shù)式|x+1|+|x﹣2|,可分以下三種情況
(1)x<﹣1時(shí),原式=﹣(x+1)﹣(x﹣2)=﹣2x+1
(2)﹣1≤x<2時(shí),原式=x+1﹣(x﹣2)=3
(3)x≥2時(shí),原式=x+1+x﹣2=2x﹣1
通過(guò)以上閱讀,請(qǐng)你解決以下問(wèn)題
(1)化簡(jiǎn)代數(shù)式|x+2|+|x﹣4|
(2)求|x﹣1|﹣4|x+1|的最大值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知:如圖,A、C、F、D在同一直線上,AF=DC,AB∥DE,AB=DE.
求證:(1) △ABC≌△DEF;
(2)BC∥EF.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】楊老師為了了解所教班級(jí)學(xué)生課后復(fù)習(xí)的具體情況,對(duì)本班部分學(xué)生進(jìn)行了一個(gè)月的跟蹤調(diào)查,然后將調(diào)查結(jié)果分成四類:A:優(yōu)秀;B:良好;C:一般;D:較差.并將調(diào)查結(jié)果繪制成以下兩幅不完整的統(tǒng)計(jì)圖.
請(qǐng)根據(jù)統(tǒng)計(jì)圖解答下列問(wèn)題:
(1)本次調(diào)查中,楊老師一共調(diào)查了 名學(xué)生,其中C類女生有 名,D類男生有 名;
(2)補(bǔ)全上面的條形統(tǒng)計(jì)圖和扇形統(tǒng)計(jì)圖;
(3)在此次調(diào)查中,小平屬于D類.為了進(jìn)步,她請(qǐng)楊老師從被調(diào)查的A類學(xué)生中隨機(jī)選取一位同學(xué),和她進(jìn)行“一幫一”的課后互助學(xué)習(xí).請(qǐng)求出所選的同學(xué)恰好是一位女同學(xué)的概率.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在長(zhǎng)度為1個(gè)單位長(zhǎng)度的小正方形組成的正方形網(wǎng)格中,點(diǎn)A、B、C在小正方形的頂點(diǎn)上.
(1)在圖中畫出與△ABC關(guān)于直線l成軸對(duì)稱的△AB′C′;
(2)在直線l上找一點(diǎn)P,使PB′+PC的長(zhǎng)最短;
(3)若△ACM是以AC為腰的等腰三角形,點(diǎn)M在小正方形的頂點(diǎn)上.這樣的點(diǎn)M共有 個(gè).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某電子超市銷售甲、乙兩種型號(hào)的藍(lán)牙音箱,每臺(tái)進(jìn)價(jià)分別為240元,140元,下表是近兩周的銷售情況:(銷售收入=銷售單價(jià)×銷售數(shù)量)
銷售時(shí)段 | 銷售數(shù)量 | 銷售收入 | |
甲種型號(hào) | 乙種型號(hào) | ||
第一周 | 3臺(tái) | 7臺(tái) | 2160元 |
第二周 | 5臺(tái) | 14臺(tái) | 4020元 |
求甲、乙兩種型號(hào)藍(lán)牙音箱的銷售單價(jià).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】我們定義:在一個(gè)三角形中,如果一個(gè)角的度數(shù)是另一個(gè)角度數(shù)的3倍,那么這樣的三角形我們稱之為“和諧三角形”.如:三個(gè)內(nèi)角分別為105°,40°,35°的三角形是“和諧三角形”
概念理解:如圖1,∠MON=60°,在射線OM上找一點(diǎn)A,過(guò)點(diǎn)A作AB⊥OM交ON于點(diǎn)B,以A為端點(diǎn)作射線AD,交線段OB于點(diǎn)C(點(diǎn)C不與O,B重合)
(1)∠ABO的度數(shù)為______,△AOB______(填“是”或“不是”)“和諧三角形”;
(2)若∠ACB=80°,求證:△AOC是“和諧三角形”.
應(yīng)用拓展:(3)如圖2,點(diǎn)D在△ABC的邊AB上,連接DC,作∠ADC的平分線交AC于點(diǎn)E,在DC上取點(diǎn)F,使∠EFC+∠BDC=180°,∠DEF=∠B.若△BCD是“和諧三角形”,求∠B的度數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某自動(dòng)化車間計(jì)劃生產(chǎn)480個(gè)零件,當(dāng)生產(chǎn)任務(wù)完成一半時(shí),停止生產(chǎn)進(jìn)行自動(dòng)化程序軟件升級(jí),用時(shí)20分鐘,恢復(fù)生產(chǎn)后工作效率比原來(lái)提高了,結(jié)果完成任務(wù)時(shí)比原計(jì)劃提前了40分鐘,求軟件升級(jí)后每小時(shí)生產(chǎn)多少個(gè)零件?
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com