精英家教網(wǎng)如圖,直線l經(jīng)過⊙O的圓心O,且與⊙O交于A、B兩點,點C在⊙O上,且∠AOC=30°,點P是直線l上的一個動點(與圓心O不重合),直線CP與⊙O相交于點Q.
問:是否存在點P,使得QP=QO;
 
(用“存在”或“不存在”填空).若存在,滿足上述條件的點有幾個?并求出相應的∠OCP的大;若不存在,請簡要說明理由:
 
分析:點P是直線l上的一個動點,因而點P與線段AO有三種位置關系,在線段AO上,點P在OB上,點P在OA的延長線上.分這三種情況進行討論即可.
解答:精英家教網(wǎng)解:①根據(jù)題意,畫出圖(1),
在△QOC中,OC=OQ,
∴∠OQC=∠OCQ,
在△OPQ中,QP=QO,
∴∠QOP=∠QPO,
又∵∠QPO=∠OCQ+∠AOC,∠AOC=30°,
∴∠QPO=∠OCQ+30°,
在△OPQ中,∠QOP+∠QPO+∠OQC=180°,
即∠OCQ+30°+∠OCQ+30°+∠OCQ=180°,
解得∠OCQ=40°,
即∠OCP=40°.

②當P在線段OA的延長線上(如圖2)
∵OC=OQ,∴∠OQP=
180°-∠QOC
2
①,
∵OQ=PQ,
∴∠OPQ=
180°-∠OQP
2
②,
在△OQP中,30°+∠QOC+∠OQP+∠OPQ=180°③,精英家教網(wǎng)
把①②代入③得∠QOC=20°,則∠OQP=80°
∴∠OCP=100°;

③當P在線段OA的反向延長線上(如圖3),精英家教網(wǎng)
∵OC=OQ,
∴∠OCP=∠OQC=
180°-∠COQ
2
①,
∵OQ=PQ,
∴∠P=
180°-∠OQP
2
②,
∵∠AOC=30°,
∴∠COQ+∠POQ=150°③,
∵∠P=∠POQ,2∠P=∠OCP=∠OQC④,
①②③④聯(lián)立得
∠P=10°,
∴∠OCP=180°-150°-10°=20°.

故答案為:40°、20°、100°.
點評:注意:分三種情況進行討論是解決本題的關鍵.
練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

精英家教網(wǎng)如圖,直線l經(jīng)過點A(4,0)和點B(0,4),且與二次函數(shù)y=ax2的圖象在第一象限內相交于點P,若△AOP的面積為
92
,求二次函數(shù)的解析式.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

精英家教網(wǎng)如圖,直線l經(jīng)過點M(3,0),且平行于y軸,與拋物線y=ax2交于點N,若S△OMN=9,則a的值是( 。
A、
2
3
B、-
2
3
C、
1
3
D、-
1
3

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

精英家教網(wǎng)如圖,直線l經(jīng)過⊙O的圓心O,且與⊙O交于A、B兩點,點C在⊙O上,且∠AOC=30°,點P是直線l上的一個動點(與圓心O不重合),直線CP與⊙O相交于點Q.是否存在點P,使得QP=QO;若存在,求出相應的∠OCP的大;若不存在,請簡要說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

精英家教網(wǎng)如圖,直線l經(jīng)過邊長為10的正方形中心A,且與正方形的一組對邊平行,⊙B的圓心B在直線l上,半徑為r,AB=7,要使⊙B和正方形的邊有2個公共點,那么r的取值范圍是
 

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

(2013•赤峰)如圖,直線L經(jīng)過點A(0,-1),且與雙曲線c:y=
mx
交于點B(2,1).
(1)求雙曲線c及直線L的解析式;
(2)已知P(a-1,a)在雙曲線c上,求P點的坐標.

查看答案和解析>>

同步練習冊答案