已知矩形ABCD中,AB=4,對角線BD=2AB,且BE平分∠ABD,點P從點D以每秒2個單位沿DB方向向點B運動精英家教網(wǎng),點Q從點B以每秒1個單位沿BA方向向點A運動,設(shè)運動時間為t秒,△BPQ的面積為S.
(1)若t=2時,求證:△DBA∽△PBQ;
(2)求S關(guān)于t的函數(shù)關(guān)系式及S的最大值;
(3)在運動的過程中,△BQM能否成為等腰三角形?若存在,求出t的值;若不存在,請說明理由.
分析:(1)當t=2時,根據(jù)P,Q的速度,我們可得出BP=2,BQ=1那么BP:BQ=2:1,而一直了BD=2AB,因此BP,BQ與BD,BA對應(yīng)相等,△BPQ與△BDA又共用了這兩組對應(yīng)邊的夾角,因此兩三角形相似;
(2)求三角形的面積就要知道三角形的底邊和高的長,根據(jù)P,Q的速度,我們可以用t表示出BP,BQ的長,如果過Q作BP邊的高,那么根據(jù)BQ和∠ABD的正弦值即可得出BP邊上的高是多少,然后可根據(jù)三角形的面積公式得出S與t的函數(shù)關(guān)系式;
(3)要按底角的不同來分類討論:
①當∠QBM,∠BMQ為等腰三角形的底角時,根據(jù)AE平分∠ABD,那么這兩個角就都應(yīng)該是30°,此時△QBM的外角∠AQM=60°,就與∠ABD相等,顯然這種情況是不成立的;
②當∠QBM,∠BQM為等腰三角形的底角時,由于這兩個角都是30°,那么∠QPB就是個直角,那么我們可在直角△QPB中,我們可根據(jù)∠ABD的余弦函數(shù)得出BQ,BP的比例關(guān)系,然后我們可用t表示出BQ,BP即可得出t的值;
③當∠BQM,∠BMQ為等腰三角形的底角時,那么這兩個角就都應(yīng)該是75°,我們可通過構(gòu)建直角三角形來求t的值,過Q作QF垂直BD于F,那么我們可將三角形BQP分成兩個含特殊角的直角三角形,一個是含30°,60°角的直角三角形,一個是等腰直角三角形.那么我們可根據(jù)這些特殊角得出BQ,QF,BF,PF之間的關(guān)系,然后分別用t表示出來,根據(jù)BP=BF+PF,將等值的線段替換后即可得出t的值.
解答:解:(1)∵t=2,
∴BQ=2,PB=4,
BQ
BA
=
BP
BD
,∠PBQ=∠PBQ,
∴△PBQ∽△DBA;
精英家教網(wǎng)
(2)過點Q作△PBQ的高h,
則S△PBQ=
1
2
PB•h=-
3
2
t2+2
3
t=-
3
2
(t-2)2+2
3

∴當t=2時,Smax=2
3
;

(3)分三種情況討論:
①當∠QBM=∠BMQ=30°時,有:精英家教網(wǎng)
∠AQM=60°=∠ABD,
∴PQ∥BD,
∴與題意矛盾,不存在;
②當∠QBM=∠BQM=30°時,如圖,則
BQ=2PB即2(8-2t)=t,得t=
16
5
≤4;精英家教網(wǎng)
③當∠BQM=∠BMQ=75°時,如圖,
作QF⊥BP,則:PB=BF+PF=BF+QF=
1
2
t+
3
2
t=8-2t,
得:t=
16
3
+5
=
40-8
3
11
≤4,
∴當t=
16
5
或t=
40-8
3
11
時,△BQM成為等腰三角形.
點評:本題考查的知識點較多,要注意對(3)中底角不同時等腰三角形的不同來分情況的討論.
練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

如圖所示,已知矩形ABCD中,CD=2,AD=3,點P是AD上的一個動點(與A、D不重合),過點P作PE⊥CP交直線AB于點E,設(shè)PD=x,AE=y,
(1)寫出y與x的函數(shù)解析式,并指出自變量的取值范圍;
(2)如果△PCD的面積是△AEP面積的4倍,求CE的長;
(3)是否存在點P,使△APE沿PE翻折后,點A落在BC上?證明你的結(jié)論.
精英家教網(wǎng)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

已知矩形ABCD中,對角線AC、BD交于O,若∠AOB=120°,BD=8cm,則矩形ABCD的面積為
 
cm2

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

精英家教網(wǎng)如圖,已知矩形ABCD中,BC=6,AB=8,延長AD到點E,使AE=15,連接BE交AC于點P.
(1)求AP的長;
(2)若以點A為圓心,AP為半徑作⊙A,試判斷線段BE與⊙A的位置關(guān)系并說明理由;
(3)已知以點A為圓心,r1為半徑的動⊙A,使點D在動⊙A的內(nèi)部,點B在動⊙A的外部.
①求動⊙A的半徑r1的取值范圍;
②若以點C為圓心,r2為半徑的動⊙C與動⊙A相切,求r2的取值范圍.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖:已知矩形ABCD中,CE∥DF.
(1)請問圖中有哪幾對三角形全等,全部寫出來(不另添輔助線);
(2)請任選其中一對全等三角形給予證明.

查看答案和解析>>

同步練習冊答案