如圖,,,,下面的四個結(jié)論中:
①AB = CD; ②BE = CF;③;④,其中正確的有(   )
A.4個B.3個C.2個D.1個
A
此題考查兩直線平行的性質(zhì)定理、三角形全等的判定定理的應(yīng)用、三角形犬的的性質(zhì)定理的應(yīng)用,平四邊形面積的計算;如下圖所示,連接,由,得,所以,由,得,,由,得

,所以①正確;由,所以②正確;
,所以③正確;
的底和高相等,所以面積相等,所以④正確;
練習冊系列答案
相關(guān)習題

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

(8分)如圖11,一張矩形紙片ABCD,其中AD=8cm,AB=6cm,先沿對角線BD折疊,點C落在點C′的位置,BC′交AD于點G.
(1)求證:AG=C′G;
(2)如圖12,再折疊一次,使點D與點A重合,的折痕EN,EN角AD于M,求EM的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:填空題

如圖,四邊形ABCD是正方形,E是BC延長線上一點,且CE=BD,則∠DAE的度數(shù)為____.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,菱形ABCD的邊長為20cm,∠ABC=120°.動點P、Q同時從點A出發(fā),其中P以4cm/s的速度,沿A→B→C的路線向點C運動;Q以2cm/s的速度,沿A→C的路線向點C運動.當P、Q到達終點C時,整個運動隨之結(jié)束,設(shè)運動時間為t秒.

(1)在點P、Q運動過程中,請判斷PQ與對角線AC的位置關(guān)系,并說明理由;
(2)若點Q關(guān)于菱形ABCD的對角線交點O的對稱點為M,過點P且垂直于AB的直線l交菱形ABCD的邊AD(或CD)于點N.
①當t為何值時,點P、M、N在一直線上?
②當點P、M、N不在一直線上時,是否存在這樣的t,使得△PMN是以PN為一直角邊的直角三角形?若存在,請求出所有符合條件的t的值;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,把矩形紙片ABCD沿EF折疊,使點B落在邊AD上的點D處,點A落在點處,連結(jié)BE.

求證:四邊形是菱形;
若AB =" 4" cm,BC =" 8" cm,求折痕EF的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

有一水庫大壩的橫截面是梯形ABCD,AD∥BC,EF為水庫的水面,點E在DC上,某課題小組在老師帶領(lǐng)下想測量水的深度,他們測得背水坡AB的長為12米,迎水坡DE的長為2米,∠BAD=135°,∠ADC=120°,求水深.(精確到0.1米,

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,把直角梯形沿方向平移得到梯形,相交于點,=20cm,=5cm,=4cm,圖中陰影部分的面積與哪個四邊形的面積相等,并求出陰影部分的面積

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖3,在中,,,兩點分別在上,,將繞點順時針旋轉(zhuǎn),得到(如圖4,點分別與對應(yīng)),點上,相交于點

(1)求的度數(shù);
(2)求證:四邊形是梯形;
(3)求的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

)已知,如圖,現(xiàn)有、的正方形紙片和的矩形紙片各若干塊,試選用這些紙片(每種紙片至少用一次)在下面的虛線方框中拼成一個矩形(每兩個紙片之間既不重疊,也無空隙,拼出的圖中必須保留拼圖的痕跡),使拼出的矩形面積為a2+3ab+2b2,并標出此矩形的長和寬.

查看答案和解析>>

同步練習冊答案