拋物線與x軸的交點坐標是(-l,0)和(3,0),則此拋物線的對稱軸是

A.直線x=-1        B.直線x="0"         C.直線x=1          D.直線x= 3

 

【答案】

C

【解析】

試題分析:根據(jù)拋物線與x軸的交點坐標結(jié)合拋物線的對稱性即可求得結(jié)果.

∵拋物線與x軸的交點坐標是(-l,0)和(3,0)

∴此拋物線的對稱軸是直線x=1

故選C.

考點:二次函數(shù)的性質(zhì)

點評:本題屬于基礎應用題,只需學生熟練掌握拋物線的對稱性,即可完成.

 

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

(2013•寶山區(qū)一模)在平面直角坐標系中,拋物線過原點O,且與x軸交于另一點A(A在O右側(cè)),頂點為B.艾思軻同學用一把寬3cm的矩形直尺對拋物線進行如下測量:(1)量得OA=3cm,(2)當把直尺的左邊與拋物線的對稱抽重合,使得直尺左下端點與拋物線的頂點重合時(如圖1),測得拋物線與直尺右邊的交點C的刻度讀數(shù)為4.5cm.
艾思軻同學將A的坐標記作(3,0),然后利用上述結(jié)論嘗試完成下列各題:
(1)寫出拋物線的對稱軸;
(2)求出該拋物線的解析式;
(3)探究拋物線的對稱軸上是否存在使△ACD周長最小的點D;
(4)然后又將圖中的直尺(足夠長)沿水平方向向右平移到點A的右邊(如圖2),直尺的兩邊交x軸于點H,G,交拋物線于E,F(xiàn),探究梯形EFGH的面積S與線段EF的長度是否存在函數(shù)關系.
同學:如上述(3)(4)結(jié)論存在,請你幫艾思軻同學一起完成,如上述(3)(4)結(jié)論不存在,請你告訴艾思軻同學結(jié)論不存在的理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:044

已知拋物線的頂點在第一象限,其橫坐標是縱坐標的2倍,對稱軸與x軸的交點在一次函數(shù)的圖象上,求b,c的值.

查看答案和解析>>

科目:初中數(shù)學 來源:同步輕松練習 九年級數(shù)學下 題型:044

已知拋物線y=x2+bx+c的頂點在第四象限,頂點的縱坐標是橫坐標的2倍,對稱軸與x軸的交點在一次函數(shù)y=x-c上,求b,c的值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:解答題

在平面直角坐標系中,拋物線過原點O,且與x軸交于另一點A(A在O右側(cè)),頂點為B.艾思軻同學用一把寬3cm的矩形直尺對拋物線進行如下測量:(1)量得OA=3cm,(2)當把直尺的左邊與拋物線的對稱抽重合,使得直尺左下端點與拋物線的頂點重合時(如圖1),測得拋物線與直尺右邊的交點C的刻度讀數(shù)為4.5cm.
艾思軻同學將A的坐標記作(3,0),然后利用上述結(jié)論嘗試完成下列各題:
(1)寫出拋物線的對稱軸;
(2)求出該拋物線的解析式;
(3)探究拋物線的對稱軸上是否存在使△ACD周長最小的點D;
(4)然后又將圖中的直尺(足夠長)沿水平方向向右平移到點A的右邊(如圖2),直尺的兩邊交x軸于點H,G,交拋物線于E,F(xiàn),探究梯形EFGH的面積S與線段EF的長度是否存在函數(shù)關系.
同學:如上述(3)(4)結(jié)論存在,請你幫艾思軻同學一起完成,如上述(3)(4)結(jié)論不存在,請你告訴艾思軻同學結(jié)論不存在的理由.

查看答案和解析>>

科目:初中數(shù)學 來源:2013年上海市寶山區(qū)中考數(shù)學一模試卷(解析版) 題型:解答題

在平面直角坐標系中,拋物線過原點O,且與x軸交于另一點A(A在O右側(cè)),頂點為B.艾思軻同學用一把寬3cm的矩形直尺對拋物線進行如下測量:(1)量得OA=3cm,(2)當把直尺的左邊與拋物線的對稱抽重合,使得直尺左下端點與拋物線的頂點重合時(如圖1),測得拋物線與直尺右邊的交點C的刻度讀數(shù)為4.5cm.
艾思軻同學將A的坐標記作(3,0),然后利用上述結(jié)論嘗試完成下列各題:
(1)寫出拋物線的對稱軸;
(2)求出該拋物線的解析式;
(3)探究拋物線的對稱軸上是否存在使△ACD周長最小的點D;
(4)然后又將圖中的直尺(足夠長)沿水平方向向右平移到點A的右邊(如圖2),直尺的兩邊交x軸于點H,G,交拋物線于E,F(xiàn),探究梯形EFGH的面積S與線段EF的長度是否存在函數(shù)關系.
同學:如上述(3)(4)結(jié)論存在,請你幫艾思軻同學一起完成,如上述(3)(4)結(jié)論不存在,請你告訴艾思軻同學結(jié)論不存在的理由.

查看答案和解析>>

同步練習冊答案