(2004•聊城模擬)為了測得聊城鐵塔的高度,小明在離鐵塔10米處的點C測得塔頂A的仰角為α,小亮在離鐵塔25米處的點D測得塔頂A的仰角為β(如圖),恰巧α+β=90度.小明和小亮很快求出了鐵塔AB的高度.你知道他倆是怎樣求出來的嗎?請寫出你的解題過程(結(jié)果精確到0.01米).
分析:首先根據(jù)題意分析圖形:本題涉及到兩個直角三角形△ABD、△ABC,應(yīng)利用其公共邊AB構(gòu)造等量關(guān)系,借助DC=DB-BC=15,α+β=90°;構(gòu)造方程關(guān)系式,進而可求出答案.
解答:解:在Rt△ABC中,AB=10tanα;
在Rt△ABD中,AB=25tanβ;
∵α+β=90?,∴AB=25tan(90?-α)=25cotα,
∴AB2=10tanα•25cotα=250
∴AB=5
10
=5×3.162=15.81(米)
答:鐵塔的高度為15.81米.
點評:本題考查俯角、仰角的定義,要求學(xué)生能借助俯角、仰角構(gòu)造直角三角形并結(jié)合圖形利用三角函數(shù)解直角三角形.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

(2004•聊城模擬)計算
sin30°
1+cos30°
+
tan45°
cot60°
的結(jié)果為
2
2

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2006年福建省福州市一中招生綜合素質(zhì)測試數(shù)學(xué)試卷(解析版) 題型:解答題

(2004•聊城模擬)如圖,正方形ABCD中,有一直徑為BC的半圓,BC=2cm,現(xiàn)有兩點E、F,分別從點B、點A同時出發(fā),點E沿線段BA以1cm/s的速度向點A運動,點F沿折線A-D-C以2cm/s的速度向點C運動,設(shè)點E離開點B的時間為t(秒).
(1)當t為何值時,線段EF與BC平行?
(2)設(shè)1<t<2,當t為何值時,EF與半圓相切?
(3)1≤t<2時,設(shè)EF與AC相交于點P,問點E、F運動時,點P的位置是否發(fā)生變化?若發(fā)生變化,請說明理由;若不發(fā)生變化,請給予證明,并求AP:PC的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2004年山東省聊城市中考適應(yīng)性考試數(shù)學(xué)試卷(解析版) 題型:解答題

(2004•聊城模擬)如圖,正方形ABCD中,有一直徑為BC的半圓,BC=2cm,現(xiàn)有兩點E、F,分別從點B、點A同時出發(fā),點E沿線段BA以1cm/s的速度向點A運動,點F沿折線A-D-C以2cm/s的速度向點C運動,設(shè)點E離開點B的時間為t(秒).
(1)當t為何值時,線段EF與BC平行?
(2)設(shè)1<t<2,當t為何值時,EF與半圓相切?
(3)1≤t<2時,設(shè)EF與AC相交于點P,問點E、F運動時,點P的位置是否發(fā)生變化?若發(fā)生變化,請說明理由;若不發(fā)生變化,請給予證明,并求AP:PC的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2004年山東省聊城市中考適應(yīng)性考試數(shù)學(xué)試卷(解析版) 題型:選擇題

(2004•聊城模擬)全等三角形又叫做合同三角形.平面內(nèi)的合同三角形分為真正合同三角形和鏡面合同三角形.假如△ABC和△A′B′C′是全等三角形,且點A與點A′對應(yīng),點B與點B′對應(yīng),點C與點C′對應(yīng).當沿周界A-B-C-A及A′-B′-C′-A′環(huán)繞時,若運動方向相同,則稱它們是真正合同三角形(如圖①);若運動方向相反,則稱它們是鏡面合同三角形(如圖②).

兩個真正合同三角形,都可以在平面內(nèi)通過平移或旋轉(zhuǎn)使它們重合;而兩個鏡面合同三角形要重合,則必須將其中的一個翻轉(zhuǎn)180度.下列各組合同三角形中,屬于鏡面合同三角形的是( )
A.
B.
C.
D.

查看答案和解析>>

同步練習(xí)冊答案