【題目】如圖,已知∠AOB是直角,OE平分∠AOC,OF平分∠BOC

(1)∠BOC=60°,求∠EOF的度數(shù);

(2)∠AOC=x°(x90),此時(shí)能否求出∠EOF的大小,若能,請(qǐng)求出它的數(shù)值

【答案】(1)EOF=45°;(2)EOF總等于45°.

【解析】

1)觀察發(fā)現(xiàn),則找到的度數(shù)即可,而的一半,的一半, 已知或可求,則的度數(shù)可求.

2)按照(1)的方法,用字母替換掉具體的度數(shù)即可.

1)因?yàn)椤?/span>BOC=60°,AOB=90°

所以∠AOC=150°

因?yàn)?/span>OE平分∠AOC

所以

因?yàn)?/span>OF平分∠BOC

所以

所以∠EOF=COE-COF

=75°-30°

=45°

2)能具體求出∠EOF的大小

因?yàn)椤?/span>AOC=x°,AOB=90°

所以∠BOC=x°-90°

因?yàn)?/span>OE平分∠A0C

所以

因?yàn)?/span>OF平分∠BOC

所以

所以∠EOF=COE-COF

即當(dāng)x>90時(shí),∠EOF總等于45°

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在平行四邊形ABCD中,AC,BD相交于點(diǎn)O,點(diǎn)EBC上,AEBDF

1)若E是靠近點(diǎn)B的三等分點(diǎn),求;①的值;②△BEF與△DAF的面積比;

2)當(dāng)時(shí),求的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,數(shù)軸上點(diǎn)A,B分別對(duì)應(yīng)數(shù)a,b.其中a0,b0

1)當(dāng)a=﹣2b6時(shí),線段AB的中點(diǎn)對(duì)應(yīng)的數(shù)是   ;(直接填結(jié)果)

2)若該數(shù)軸上另有一點(diǎn)M對(duì)應(yīng)著數(shù)m

①當(dāng)m2b2,且AM2BM時(shí),求代數(shù)式a+2b+20的值;

②當(dāng)a=﹣2,且AM3BM時(shí),小安演算發(fā)現(xiàn)代數(shù)式3b4m是一個(gè)定值.

老師點(diǎn)評(píng):你的演算發(fā)現(xiàn)還不完整!

請(qǐng)通過(guò)演算解釋?zhuān)簽槭裁?/span>小安的演算發(fā)現(xiàn)是不完整的?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,O是ABC的外接圓的圓心,ABC=60°,BF,CE分別是AC,AB邊上的高且交于點(diǎn)H,CE交O于M,D,G分別在邊BC,AB上,且BD=BH,BG=BO,下列結(jié)論:①ABO=HBC;②ABBC=2BFBH;③BM=BD;④GBD為等邊三角形,其中正確結(jié)論的序號(hào)是( )

A.①② B.①③④ C.①②④ D.①②③④

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖所示,已知 Rt ACB 中, AC =3, BC =4,過(guò)直角頂點(diǎn) C CA 1 AB ,垂足為 A 1 ,再過(guò) A 1 A 1 C 1 BC ,垂足為 C 1 ,…...,這樣一直作下去得到了一組線段 CA 1 , A 1 C 1 , C 1 A 2 ,…,則第10條線段 A 5 C 5 =________.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,直線l平行x軸,交y軸于點(diǎn)A,第一象限內(nèi)的點(diǎn)B在l上,連結(jié)OB,動(dòng)點(diǎn)P滿(mǎn)足∠APQ=90°,PQ交x軸于點(diǎn)C.

(1)當(dāng)動(dòng)點(diǎn)P與點(diǎn)B重合時(shí),若點(diǎn)B的坐標(biāo)是(2,1),求PA的長(zhǎng).

(2)當(dāng)動(dòng)點(diǎn)P在線段OB的延長(zhǎng)線上時(shí),若點(diǎn)A的縱坐標(biāo)與點(diǎn)B的橫坐標(biāo)相等,求PA:PC的值.

(3)當(dāng)動(dòng)點(diǎn)P在直線OB上時(shí),點(diǎn)D是直線OB與直線CA的交點(diǎn),點(diǎn)E是直線CP與y軸的交點(diǎn),若∠ACE=∠AEC,PD=2OD,求PA:PC的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在對(duì)Rt△OAB依次進(jìn)行位似、軸對(duì)稱(chēng)和平移變換后得到△O′A′B′

(1)在坐標(biāo)紙上畫(huà)出這幾次變換相應(yīng)的圖形;

(2)設(shè)P(x,y)為△OAB邊上任一點(diǎn),依次寫(xiě)出這幾次變換后點(diǎn)P對(duì)應(yīng)點(diǎn)的坐標(biāo)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在平面直角坐標(biāo)系xOy中,A、B為x軸上兩點(diǎn),C、D為y軸上的兩點(diǎn),經(jīng)過(guò)點(diǎn)A、C、B的拋物線的一部分c1與經(jīng)過(guò)點(diǎn)A、D、B的拋物線的一部分c2組合成一條封閉曲線,我們把這條封閉曲線成為“蛋線”.已知點(diǎn)C的坐標(biāo)為(0,﹣ ),點(diǎn)M是拋物線C2:y=mx2﹣2mx﹣3m(m<0)的頂點(diǎn).

(1)求A、B兩點(diǎn)的坐標(biāo);

(2)“蛋線”在第四象限上是否存在一點(diǎn)P,使得△PBC的面積最大?若存在,求出△PBC面積的最大值;若不存在,請(qǐng)說(shuō)明理由;

(3)當(dāng)△BDM為直角三角形時(shí),求m的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在RtABC中,∠ACB=90°,AO是△ABC的角平分線.以O為圓心,OC為半徑作⊙O.

(1)求證:AB是⊙O的切線.

(2)已知AO交⊙O于點(diǎn)E,延長(zhǎng)AO交⊙O于點(diǎn)D,tanD=,求的值.

(3)(3分)在(2)的條件下,設(shè)⊙O的半徑為3,求AB的長(zhǎng).

查看答案和解析>>

同步練習(xí)冊(cè)答案