【題目】如圖,AB是⊙O的直徑,AC是⊙O的弦,∠BAC的平分線交⊙O于點D,過點D作DE⊥AC交AC的延長線于點E,連接BD.
(1)求證:DE是⊙O的切線;
(2)若BD=3,AD=4,則DE= .
【答案】(1)見解析;(2)
【解析】
(1)連接OD,如圖,先證明OD∥AE,再利用DE⊥AE得到OD⊥DE,然后根據切線的判定定理得到結論;
(2)證明△ABD∽△ADE,通過線段比例關系求出DE的長.
(1)證明:連接OD
∵AD平分∠BAC
∴∠BAD=∠DAC
∵OA=OD
∴∠BAD=∠ODA
∴∠ODA=∠DAC
∴OD∥AE
∴∠ODE+∠E=180°
∵DE⊥AE
∴∠E=90°
∴∠ODE=180°-∠E=180°-90°=90°,即OD⊥DE
∵點D在⊙O上
∴DE是⊙O的切線.
(2)∵AB是⊙O的直徑,
∴∠ADB=90°,
∵AD平分∠BAC,
∴∠BAD=∠DAE,
在△ABD和△ADE中,
,
∴△ABD∽△ADE,
∴,
∵BD=3,AD=4,AB==5
∴DE==.
科目:初中數學 來源: 題型:
【題目】作圖題:⊙O上有三個點A,B,C,∠BAC=70°,請畫出要求的角,并標注.
(1)畫一個140°的圓心角;(2)畫一個110°的圓周角;(3)畫一個20°的圓周角.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】請閱讀以下材料,并完成相應的任務:
任務:
(1)設P(a,),R(b,),求直線OM的函數解析式(用含a,b的代數式表示),并說明Q點在直線OM上;
(2)證明:∠MOB=∠AOB.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】現代城市綠化帶在不斷擴大,綠化用水的節(jié)約是一個非常重要的問題.
如圖1、圖2所示,某噴灌設備由一根高度為0.64 m的水管和一個旋轉噴頭組成,水管豎直安裝在綠化帶地面上,旋轉噴頭安裝在水管頂部(水管頂部和旋轉噴頭口之間的長度、水管在噴灌區(qū)域上的占地面積均忽略不計),旋轉噴頭可以向周圍噴出多種拋物線形水柱,從而在綠化帶上噴灌出一塊圓形區(qū)域.現測得噴的最遠的水柱在距離水管的水平距離3 m處達到最高,高度為1 m.
(1)求噴灌出的圓形區(qū)域的半徑;
(2)在邊長為16 m的正方形綠化帶上固定安裝三個該設備,噴灌區(qū)域可以完全覆蓋該綠化帶嗎?如果可以,請說明理由;如果不可以,假設水管可以上下調整高度,求水管高度為多少時,噴灌區(qū)域恰好可以完全覆蓋該綠化帶.(以上需要畫出示意圖,并有必要的計算、推理過程)
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,已知菱形ABCD,對角線AC、BD相交于點O,AC=6,BD=8.點E是AB邊上一點,求作矩形EFGH,使得點F、G、H分別落在邊BC、CD、AD上.設 AE=m.
(1)如圖①,當m=1時,利用直尺和圓規(guī),作出所有滿足條件的矩形EFGH;(保留作圖痕跡,不寫作法)
(2)寫出矩形EFGH的個數及對應的m的取值范圍.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,△ABC中,AB=AC=10,tanA=2,BE⊥AC于點E,D是線段BE上的一個動點,則的最小值是( )
A. B. C. D. 10
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】“五一”小長假期間,某超市為了吸引顧客,設計了一種促銷活動:在一個不透明的箱子里放有4個相同的小球,球上分別標有“0元”、“10元”、“20元”、“30元”的字樣.規(guī)定:顧客在本超市一次性購物滿500元以上均可獲得兩次摸球的機會(摸出小球后放回).超市根據兩小球所標金額的和返還相應的代金券.
(1)顧客甲購物1000元,則他最少可獲 元代金券,最多可獲 元代金券.
(2)請用樹形圖或列表方法,求出顧客甲獲得不低于30元(含30元)代金券的概率.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,Rt△ABC中,∠C=90°,AB=5,AC=3,D是AB的中點,E是直線BC上一點,把△BDE沿直線ED翻折后,點B落在點F處,當FD⊥BC時,線段BE的長為_____.
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com