【題目】如圖,△ABC是面積為1的等邊三角形。取BC邊中點E,作ED∥AB,
EF∥AC,得到四邊形EDAF,它的面積記做S1;取BE中點G,做GH∥FB,GK∥EF,
得到四邊形GHFK,它的面積記作S2.照此規(guī)律作下去,
則S2018=__________________.
科目:初中數(shù)學 來源: 題型:
【題目】如圖中的圖象(折線)描述了一汽車在某一直線上的行駛過程中,汽車離出發(fā)地的距離s(千米)和行駛時間t(小時)之間的函數(shù)關系,根據(jù)圖中提供的信息,給出下列說法:
①汽車共行駛了120千米;
②汽車在行駛途中停留了0.5小時;
③汽車在整個行駛過程中的平均速度為千米/時;
④汽車自出發(fā)后3小時至4.5小時之間行駛的速度在逐漸減少.其中正確的說法共有( ).
A. 1個 B. 2個 C. 3個 D. 4個
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,某水平地面上建筑物的高度為AB,在點D和點F處分別豎立高是2米的標桿CD和EF,兩標桿相隔52米,并且建筑物AB、標桿CD和EF在同一豎直平面內,從標桿CD后退2米到點G處,在G處測得建筑物頂端A和標桿頂端C在同一條直線上;從標桿FE后退4米到點H處,在H處測得建筑物頂端A和標桿頂端E在同一條直線上,則建筑物的高是 米.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,AB∥GD,∠1=∠2,∠BAC=65°.將求∠AGD的過程填寫完整.
∵EF∥CD,
∴∠2= ( ),
∵∠1=∠2,
∴∠1=∠3,
∴AB∥ ( ),
∴∠BAC+ =180°( ),
∵∠BAC=65°,
∴∠AGD= °.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,已知拋物線l1:y=(x﹣2)2﹣2與x軸分別交于O、A兩點,將拋物線l1向上平移得到l2 , 過點A作AB⊥x軸交拋物線l2于點B,如果由拋物線l1、l2、直線AB及y軸所圍成的陰影部分的面積為16,則拋物線l2的函數(shù)表達式為( )
A.y=(x﹣2)2+4
B.y=(x﹣2)2+3
C.y=(x﹣2)2+2
D.y=(x﹣2)2+1
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,已知∠AOB,OA=OB,點E在OB上,且四邊形AEBF是平行四邊形.請你只用無刻度的直尺在圖中畫出∠AOB的平分線(保留畫圖痕跡,不寫畫法),并說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,將矩形ABCD沿對角線AC折疊,使B落在E處,AE交CD于點F,則下列結論中不一定成立的是( )
A.AD=CE
B.AF=CF
C.△ADF≌△CEF
D.∠DAF=∠CAF
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在△ABC中,∠C=,點O在AC上,以OA為半徑的⊙O交AB于點D,過點D作⊙O的切線交BC于點E.
(1)求證:∠EDB=∠B.
(2)若sinB=,AB=10,OA=2,求線段DE的長.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,一只甲蟲在5×5的方格(每小格邊長為1)上沿著網(wǎng)格線運動.它從A處出發(fā)去看望B、C、D處的其它甲蟲,規(guī)定:向上向右走均為正,向下向左走均為負.如果從A到B記為:A→B(+1,+4),從B到A記為:B→A(﹣1,﹣4),其中第一個數(shù)表示左右方向,第二個數(shù)表示上下方向.
(1)圖中A→C( , ),B→C( , ),C→ (+1,﹣2);
(2)若這只甲蟲從A處去甲蟲P處的行走路線依次為(+2,+2),(+2,﹣1),(﹣2,+3),(﹣1,﹣2),請在圖中標出P的位置;
(3)若這只甲蟲的行走路線為A→B→C→D,請計算該甲蟲走過的路程.
(4)若圖中另有兩個格點M、N,且M→A(3﹣a,b﹣4),M→N(5﹣a,b﹣2),則N→A應記為什么?
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com