ABCD中, ∠A比∠B小200,則∠A的度數(shù)為(       )
A.600B.800C.1000D.1200
B.

試題分析:∵四邊形ABCD是平行四邊形,
∴AD∥BC,∠A=∠C,
∴∠A+∠B=180°,
∵∠B-∠A =20°,
∴∠B=100°,
∴∠A=80°.
故選B.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

準(zhǔn)備一張矩形紙片,按如圖操作:
將△ABE沿BE翻折,使點(diǎn)A落在對(duì)角線BD上的M點(diǎn),將△CDF沿DF翻折,使點(diǎn)C落在對(duì)角線BD上的N點(diǎn).
(1)求證:四邊形BFDE是平行四邊形;
(2)若四邊形BFDE是菱形,AB=2,求菱形BFDE的面積.
 

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

如圖,在△ABC中,AB=AC,以AB為直徑的⊙O與邊BC、AC分別交于D、E兩點(diǎn), DFAC于F.
(1)求證:DF為⊙O的切線;
(2)若,CF=9,求AE的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

如圖,菱形ABCD中,AB=2,∠BAD=60°,E是AB的中點(diǎn),P是對(duì)角線AC上的一個(gè)動(dòng)點(diǎn),則PE+PB的最小值是      

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

如圖,分別以n邊形的頂點(diǎn)為圓心,以1 cm為半徑畫圓,則圖中陰影部分的面積之和為_(kāi)___ cm2.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

一透明的敞口正方體容器ABCD -A′B′C′D′ 裝有一些液體,棱AB始終在水平桌面上,容器底部的傾斜角為α(∠CBE = α,如圖17-1所示).
探究 如圖1,液面剛好過(guò)棱CD,并與棱BB′ 交于點(diǎn)Q,此時(shí)液體的形狀為直三棱柱,其三視圖及尺寸如圖2所示.解決問(wèn)題:

(1)CQ與BE的位置關(guān)系是___  ___,BQ的長(zhǎng)是____  ___dm;
(2)求液體的體積;(參考算法:直棱柱體積V液 = 底面積SBCQ×高AB)
(3)求α的度數(shù).(注:sin49°=cos41°=,tan37°=)
拓展 在圖17-1的基礎(chǔ)上,以棱AB為軸將容器向左或向右旋轉(zhuǎn),但不能使液體溢出,圖17-3或圖17-4是其正面示意圖.若液面與棱C′C或CB交于點(diǎn)P,設(shè)PC = x,BQ = y.分別就圖17-3和圖17-4求y與x的函數(shù)關(guān)系式,并寫出相應(yīng)的α的范圍.
延伸 在圖17-4的基礎(chǔ)上,于容器底部正中間位置,嵌入一平行于側(cè)面的長(zhǎng)方形隔板(厚度忽略不計(jì)),得到圖17-5,隔板高NM =" 1" dm,BM = CM,NM⊥BC.繼續(xù)向右緩慢旋轉(zhuǎn),當(dāng)α = 60°時(shí),通過(guò)計(jì)算,判斷溢出容器的液體能否達(dá)到4 dm3.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

如圖,在?ABCD中,CE⊥AB,垂足為E,若∠A=120°,則∠BCE=______.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

如圖,菱形ABCD中,,DF⊥AB于點(diǎn)E,且DF=DC,連接FC,則∠ACF的度數(shù)為     度.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

在一塊平行四邊形的實(shí)驗(yàn)田里種植四種不同的農(nóng)作物,現(xiàn)將該實(shí)驗(yàn)田劃成四個(gè)平行四邊形地塊(如圖),已知其中三塊田的面積分別是10m2,15m2, 30m2,則整個(gè)這塊實(shí)驗(yàn)田的面積為     m2.

查看答案和解析>>

同步練習(xí)冊(cè)答案