【題目】有一只拉桿式旅行箱如圖1,其側(cè)面示意圖如圖2所示,已知箱體長AB=50 cm,拉桿BC的伸長距離最大時(shí)可達(dá)35 cm,點(diǎn)A、BC在同一條直線上,在箱體底端裝有圓形的滾輪⊙A,⊙A與水平地面切于點(diǎn)D,在拉桿伸長至最大的情況下,當(dāng)點(diǎn)B到水平地面MN的距離為38 cm時(shí),點(diǎn)C到水平面的距離CE59 cm.設(shè)AFMN,AFCE于點(diǎn)G(精確到1 cm,參考數(shù)據(jù):sin64°≈0.90cos64°≈0.39,tan64°≈2.1

(1)求⊙A的半徑長;

(2)當(dāng)人的手自然下垂拉旅行箱時(shí),人感覺較為舒服,某人將手自然下垂在C端拉旅行箱時(shí),CE80 cm,∠CAF=64°.求此時(shí)拉桿BC的伸長距離.

【答案】(1)8cm;(2)30cm.

【解析】

1)作BH⊥AF于點(diǎn)K,交MN于點(diǎn)H,易證△ABK∽△ACG,設(shè)圓形滾輪的半徑AD的長是xcm,根據(jù)相似三角形的性質(zhì)可得關(guān)于x的方程,然后求解方程即可;

2)在Rt△ACG中,利用,求得AC的長,進(jìn)而可求得BC的長.

解:(1)BH⊥AF于點(diǎn)K,交MN于點(diǎn)H,

BK∥CG,△ABK∽△ACG,

設(shè)圓形滾輪的半徑AD的長是xcm,

,

解得:x=8,

則圓形滾輪的半徑AD的長是8cm;

(2)Rt△ACG中,CG=808=72cm),

,

∴AC==80cm),

∴BC=ACAB=8050=30cm).

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知:如圖,在ABC中,點(diǎn)D在邊AB上,點(diǎn)E在線段CD上,且∠ACD=B=BAE.

1)求證:

2)當(dāng)點(diǎn)ECD中點(diǎn)時(shí),求證:.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系中,△AOB的位置如圖所示,已知∠AOB=90°,AO=BO,點(diǎn)A的坐標(biāo)為(-3,1)

(1)求點(diǎn)B的坐標(biāo);

(2)求過A、O、B三點(diǎn)的拋物線的解析式;

(3)設(shè)點(diǎn)B關(guān)于拋物線的對稱軸的對稱點(diǎn)為B1,求△AB1B的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】地鐵10號線某站點(diǎn)出口橫截面平面圖如圖所示,電梯的兩端分別距頂部9.9米和2.4米,在距電梯起點(diǎn)端6米的處,用1.5米的測角儀測得電梯終端處的仰角為14°,求電梯的坡度與長度.(參考數(shù)據(jù):,,

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知二次函數(shù)y=ax2+bx+c(a0)的圖象與x軸交于點(diǎn)A(﹣1,0),對稱軸為直線x=1,與y軸的交點(diǎn)B在(0,2)和(0,3)之間(包括這兩點(diǎn)),下列結(jié)論:

①當(dāng)x3時(shí),y0;②3a+b0;③﹣1a;④4ac﹣b28a;

其中正確的結(jié)論是(

A.①③④ B.①②③ C.①②④ D.①②③④

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,拋物線y=ax2+bx+3經(jīng)過A(﹣3,0)、B(1,0)兩點(diǎn),其頂點(diǎn)為D,連接AD,點(diǎn)P是線段AD上一個(gè)動(dòng)點(diǎn)(不與A、D重合).

(1)求拋物線的函數(shù)解析式,并寫出頂點(diǎn)D的坐標(biāo);

(2)如圖1,過點(diǎn)PPEy軸于點(diǎn)E.求PAE面積S的最大值;

(3)如圖2,拋物線上是否存在一點(diǎn)Q,使得四邊形OAPQ為平行四邊形?若存在求出Q點(diǎn)坐標(biāo),若不存在請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】閱讀:已知△ABC,用直尺與圓規(guī),在直線BC上方的平面內(nèi)作一點(diǎn)M(不與點(diǎn)A重合),使∠BMC=∠BAC(如圖1).

小明利用同弧所對的圓周角相等這條性質(zhì)解決了這個(gè)問題,下面是他的作圖過程:

第一步:分別作AB、BC的中垂線(虛線部分),設(shè)交點(diǎn)為O;

第二步:以O為圓心,OA為半徑畫圓(即△ABC的外接圓)

第三步:在弦BC上方的弧上(異于A點(diǎn))取一點(diǎn)M,連結(jié)MB、MC,則∠BMC=∠BAC.(如圖2

思考:如圖2,在矩形ABCD中,BC6,CD10ECD上一點(diǎn),DE2

1)請利用小明上面操作所獲得的經(jīng)驗(yàn),在矩形ABCD內(nèi)部用直尺與圓規(guī)作出一點(diǎn)P.點(diǎn)P滿足:∠BPC=∠BEC,且PBPC.(要求:用直尺與圓規(guī)作出點(diǎn)P,保留作圖痕跡.)

2)求PC的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】下列說法正確的是( )

A.?dāng)S一枚均勻的骰子,骰子停止轉(zhuǎn)動(dòng)后,6點(diǎn)朝上是必然事件

B.甲、乙兩人在相同條件下各射擊10次,他們的成績平均數(shù)相同,方差分別是,,則甲的射擊成績較穩(wěn)定

C.明天降雨的概率為,表示明天有半天都在降雨

D.了解一批電視機(jī)的使用壽命,適合用普查的方式

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在正方形ABCD中,點(diǎn)MCD的邊上,且DM=2,ΔAEMΔADM關(guān)于AM所在的直線對稱,將ΔADM按順時(shí)針方向繞點(diǎn)A旋轉(zhuǎn)90°得到ΔABF,連接EF,已知線段EF的長為,則正方形ABCD的邊長為_____

查看答案和解析>>

同步練習(xí)冊答案