12、已知點(diǎn)P(x,y)滿足x2-y2=0,則點(diǎn)P的位置是
x軸和y的角平分線上
分析:該題從x≠0和x=0來并加x2-y2=0這一條件,來進(jìn)行討論完成.
解答:解:條件x2-y2=0
得x2=y2
當(dāng)x≠0①x=y或x=-y,
此時(shí),當(dāng)x>0時(shí),y>0或y<0,則點(diǎn)P坐標(biāo)分別在第一象限、第四象限的角平分線上(除去遠(yuǎn)原點(diǎn)).
當(dāng)x<0時(shí),y<0或y>0,則點(diǎn)P坐標(biāo)分別在第三象限、第二象限的角平分線上(除去原點(diǎn)).
當(dāng)x為0是②點(diǎn)P坐標(biāo)為(0,0)即為原點(diǎn).
綜上,點(diǎn)P在x軸和y軸的角平分線上.
點(diǎn)評(píng):本題通過觀察和分析,本題是一個(gè)討論題,從x≠0和x=0并協(xié)同滿足的關(guān)系式來討論.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

9、如圖是某賓館大廳到二樓的樓梯截面圖,已知BC=6米,AB=9米,中間平臺(tái)DE與地面AB平行,且DE的長(zhǎng)度為2米,DM、EN為平臺(tái)的兩根支柱,DM、EN垂直于AB,垂足分別為M、N,∠EAB=30°,∠CDF=45°,樓梯寬度為3米.
(1)若要在樓梯上(包括平臺(tái)DE)鋪滿地毯,則地毯的面積為
45
m2
(2)沿樓梯從A點(diǎn)到E點(diǎn)鋪設(shè)價(jià)格為每平方米100元的地毯,從E點(diǎn)到C點(diǎn)鋪設(shè)價(jià)格為每平方米120元的地毯,求用地毯鋪滿整個(gè)樓梯共需要花費(fèi)
5176
元.(結(jié)果精確到1元)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

27、如圖是某賓館大廳到二樓的樓梯截面圖,已知BC=6米,AB=9米,中間平臺(tái)DE與地面AB平行,且DE的長(zhǎng)度為2米,DM、EN為平臺(tái)的兩根支柱,DM、EN垂直于AB,垂足分別為M、N,∠EAB=30°,∠CDF=45°,樓梯寬度為3米.
(1)若要在樓梯上(包括平臺(tái)DE)鋪滿地毯,求地毯的面積;
(2)沿樓梯從A點(diǎn)到E點(diǎn)鋪設(shè)價(jià)格為每平方米100元的地毯,從E點(diǎn)到C點(diǎn)鋪設(shè)價(jià)格為每平方米120元的地毯,求用地毯鋪滿整個(gè)樓梯共需要花費(fèi)多少元錢?(結(jié)果精確到1元)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2012•豐臺(tái)區(qū)二模)已知:如圖,在平面直角坐標(biāo)系xOy中,一次函數(shù)y=-x的圖象與反比例函數(shù)y=
kx
的圖象交于A、B兩點(diǎn).
(1)求k的值;
(2)如果點(diǎn)P在y軸上,且滿足以點(diǎn)A、B、P為頂點(diǎn)的三角形是直角三角形,直接寫出點(diǎn)P的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2013•菏澤)(1)已知m是方程x2-x-2=0的一個(gè)實(shí)數(shù)根,求代數(shù)式(m2-m)(m-
2
m
+1)
的值.
(2)如圖,在平面直角坐標(biāo)系xOy中,一次函數(shù)y=-x的圖象與反比例函數(shù)y=
k
x
的圖象交于A、B兩點(diǎn).
①根據(jù)圖象求k的值;
②點(diǎn)P在y軸上,且滿足以點(diǎn)A、B、P為頂點(diǎn)的三角形是直角三角形,試寫出點(diǎn)P所有可能的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

在直角坐標(biāo)系中,已知O為坐標(biāo)原點(diǎn),點(diǎn)A(-2,2),點(diǎn)P(-3,0),則滿足以O(shè)、A、P、Q 為頂點(diǎn)的四邊形為平行四邊形的點(diǎn)Q的個(gè)數(shù)有( 。

查看答案和解析>>

同步練習(xí)冊(cè)答案