如圖:拋物線y=ax2+bx+c(a≠0)的圖象與x軸的一個交點(diǎn)是(-2,0),頂點(diǎn)是(1,3).下列說法中不正確的是( 。
A.拋物線的對稱軸是x=1
B.拋物線的開口向下
C.拋物線與x軸的另一個交點(diǎn)是(2,0)
D.當(dāng)x=1時,y有最大值是3

觀察圖象可知:
A、∵頂點(diǎn)坐標(biāo)是(1,3),
∴拋物線的對稱軸是x=1,正確;
B、從圖形可以看出,拋物線的開口向下,正確;
C、∵圖象與x軸的一個交點(diǎn)是(-2,0),頂點(diǎn)是(1,3),
∴1-(-2)=3,1+3=4,
即拋物線與x軸的另一個交點(diǎn)是(4,0),錯誤;
D、當(dāng)x=1時,y有最大值是3,正確.
故選C.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源:不詳 題型:填空題

二次函數(shù)y=-3(x-1)2+2圖象的頂點(diǎn)坐標(biāo)是______.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:填空題

拋物線y=x2﹣2x+3的頂點(diǎn)坐標(biāo)是          

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

已知二次函數(shù),其圖像拋物線交軸的于點(diǎn)A(1,0)、B(3,0),交y軸于點(diǎn)C.直線過點(diǎn)C,且交拋物線于另一點(diǎn)E(點(diǎn)E不與點(diǎn)A、B重合).
(1)求此二次函數(shù)關(guān)系式;
(2)若直線經(jīng)過拋物線頂點(diǎn)D,交軸于點(diǎn)F,且,則以點(diǎn)C、D、E、F為頂點(diǎn)的四邊形能否為平行四邊形?若能,求出點(diǎn)E的坐標(biāo);若不能,請說明理由.
(3)若過點(diǎn)A作AG⊥軸,交直線于點(diǎn)G,連OG、BE,試證明OG∥BE.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

用長為32米的籬笆圍一個矩形養(yǎng)雞場,設(shè)圍成的矩形一邊長為x米,面積為y平方米.
(1)求y關(guān)于x的函數(shù)關(guān)系式;
(2)當(dāng)x為何值時,圍成的養(yǎng)雞場面積為60平方米?
(3)能否圍成面積為70平方米的養(yǎng)雞場?如果能,請求出其邊長;如果不能,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖1,在平面直角坐標(biāo)系中,點(diǎn)A、C分別在y軸和x軸上,AB∥x軸,sinC=,點(diǎn)P從O點(diǎn)出發(fā),沿邊OA、AB、BC勻速運(yùn)動,點(diǎn)Q從點(diǎn)C出發(fā),以1cm/s的速度沿邊CO勻速運(yùn)動。點(diǎn)P與點(diǎn)Q同時出發(fā),其中一點(diǎn)到達(dá)終點(diǎn),另一點(diǎn)也隨之停止運(yùn)動.設(shè)點(diǎn)P運(yùn)動的時間為t(s),△CPQ的面積為S(cm2), 已知S與t之間的函數(shù)關(guān)系如圖2中曲線段OE、線段EF與曲線段FG給出.
(1)點(diǎn)P的運(yùn)動速度為     cm/s, 點(diǎn)B、C的坐標(biāo)分別為          
(2)求曲線FG段的函數(shù)解析式;
(3)當(dāng)t為何值時,△CPQ的面積是四邊形OABC的面積的?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

已知x=m+1和x=n-1時,多項式x2+4x+6的值相等,且m-n+2≠0,則當(dāng)x=m+n+1時,多項式x2+4x+6的值等于______.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

已知二次函數(shù)y=x2-2x-3
(1)求出拋物線y=x2-2x-3的對稱軸和頂點(diǎn)坐標(biāo);
(2)在直角坐標(biāo)系中,直接畫出拋物線y=x2-2x-3(注意:關(guān)鍵點(diǎn)要準(zhǔn)確,不必寫出畫圖象的過程);
(3)根據(jù)圖象回答:
①x取什么值時,拋物線在x軸的上方?
②x取什么值時,y的值隨x的值的增大而減。
(4)根據(jù)圖象直接寫出不等式x2-2x-3>5的解集.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

已知二次函數(shù)y=x2+2x-3,解答下列問題:
(1)用配方法將該函數(shù)解析式化為y=a(x+m)2+k的形式;
(2)指出該函數(shù)圖象的開口方向、頂點(diǎn)坐標(biāo)、對稱軸,以及它的變化情況.

查看答案和解析>>

同步練習(xí)冊答案