【題目】在精準(zhǔn)扶貧中,某村的李師傅在縣政府的扶持下,去年下半年,他對家里的3個溫室大棚進(jìn)行修整改造,然后,1個大棚種植香瓜,另外2個大棚種植甜瓜,今年上半年喜獲豐收,現(xiàn)在他家的甜瓜和香瓜已全部售完,他高興地說:“我的日子終于好了”.
最近,李師傅在扶貧工作者的指導(dǎo)下,計劃在農(nóng)業(yè)合作社承包5個大棚,以后就用8個大棚繼續(xù)種植香瓜和甜瓜,他根據(jù)種植經(jīng)驗(yàn)及今年上半年的市場情況,打算下半年種植時,兩個品種同時種,一個大棚只種一個品種的瓜,并預(yù)測明年兩種瓜的產(chǎn)量、銷售價格及成本如下:
現(xiàn)假設(shè)李師傅今年下半年香瓜種植的大棚數(shù)為x個,明年上半年8個大棚中所產(chǎn)的瓜全部售完后,獲得的利潤為y元.
根據(jù)以上提供的信息,請你解答下列問題:
(1)求出y與x之間的函數(shù)關(guān)系式;
(2)求出李師傅種植的8個大棚中,香瓜至少種植幾個大棚?才能使獲得的利潤不低于10萬元.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,陰影部分是邊長為a的大正方形中剪去一個邊長為b的小正方形后所得到的圖形,將陰影部分通過割、拼,形成新的圖形,給出下列3種割拼方法,其中能夠驗(yàn)證平方差公式的是( )
A. ①② B. ②③ C. ①③ D. ①②③
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,兩個含有30°角的完全相同的三角板ABC和DEF沿直線l滑動,下列說法錯誤的是( )
A. 四邊形ACDF是平行四邊形 B. 當(dāng)點(diǎn)E為BC中點(diǎn)時,四邊形ACDF是矩形
C. 當(dāng)點(diǎn)B與點(diǎn)E重合時,四邊形ACDF是菱形 D. 四邊形ACDF不可能是正方形
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】元旦假期,小明一家游覽倉圣公園,公園內(nèi)有一座假山,假山上有一條石階小路,其中有兩段臺階的高度如圖所示(圖中的數(shù)字表示每一級臺階的高度,單位:cm).請你運(yùn)用所學(xué)習(xí)的統(tǒng)計知識,解決以下問題:
(1)把每一級臺階的高度作為數(shù)據(jù),請從統(tǒng)計知識方面(平均數(shù)、中位數(shù))說一下甲、乙兩段臺階有哪些相同點(diǎn)和不同點(diǎn)?
(2)甲、乙兩段臺階哪段上行走會比較舒服?你能用所學(xué)知識說明嗎?
(3)為方便游客行走,需要重新整修上山的小路.對于這兩段臺階路,在臺階數(shù)不變的情況下,請你提出合理的整修建議.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】證明題
(1)已知一元二次方程x2+px+q=0(p2-4q≥0)的兩根為x1、x2;求證:x1+x2=-p , x1 x2=q .
(2)已知拋物線y=x2+px+q與x軸交于A、B兩點(diǎn),且過點(diǎn)(-1,-1),設(shè)線段AB的長為d,當(dāng)p為何值時,d2取得最小值,并求出最小值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】下列做法正確的是( )
A. 由2(x+1)=x+7去括號、移項(xiàng)、合并同類項(xiàng),得x=5
B. 由=1+去分母,得2(2x﹣1)=1+3(x﹣3)
C. 由2(2x﹣1)﹣3(x﹣3)=1去括號,得4x﹣2﹣3x﹣9=1
D. 由7x=4x﹣3移項(xiàng),得7x﹣4x=3
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(1)若9的平方根是a,b的絕對值是4,求a+b的值.
(2)已知一個數(shù)的平方根是3a+1和a+11,求這個數(shù)的立方根.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,EF∥AD,AD∥BC,CE平分∠BCF,∠DAC=120°,∠ACF=20°,求∠FEC的度數(shù).
解:∵AD∥BC,( )
∴∠ACB+∠DAC=180° ,( )
∵∠DAC=120°,(已知)
∴∠ACB=180°﹣∠DAC= °.
∵∠ACF=20°(已知),
∴∠BCF=∠ACB﹣∠ACF= °.
∵CE平分∠BCF,
∴∠BCE=∠BCF= °.
∵EF∥AD,AD∥BC,
∴EF∥ ,( )
∴∠FEC=∠BCE= °.( )
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知:如圖,△ABC中,∠BAD=∠EBC,AD交BE于F.
(1)試說明 : ∠ABC=∠BFD ;
(2)若∠ABC=35°,EG∥AD,EH⊥BE,求∠HEG的度數(shù).
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com