拋物線(b,c均為常數(shù))與x軸交于兩點,與y軸交于點
(1)求該拋物線對應的函數(shù)表達式;
(2)若P是拋物線上一點,且點P到拋物線的對稱軸的距離為3,請直接寫出點P的坐標.
(1);(2)

試題分析:(1)由拋物線,代入即可求得該拋物線對應的函數(shù)表達式.
(2)求拋物線的對稱軸,根據(jù)點P到拋物線的對稱軸的距離為3確定點P的橫坐標,代入函數(shù)表達式即可求得縱坐標.
試題解析:(1) ∵拋物線與y軸交于點,∴c="3" .?
.
又∵拋物線與x軸交于點,∴b="-4" .?
.
(2)∵,∴拋物線的對稱軸為
∵當點P到拋物線的對稱軸的距離為3時,,
∴當時,
∴點P的坐標為
練習冊系列答案
相關習題

科目:初中數(shù)學 來源:不詳 題型:解答題

如圖,拋物線經過A、C(0,4)兩點,與x軸的另一交點是B.
(1)求拋物線的解析式;
(2)若點在第一象限的拋物線上,求點D關于直線BC的對稱點的坐標;
(3)在(2)的條件下,過點D作DE⊥BC于點E,反比例函數(shù)的圖象經過點E,點在此反比例函數(shù)圖象上,求的值.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

如圖1,拋物線軸交于兩點,與軸交于點,連結AC,若
(1)求拋物線的解析式;
(2)拋物線對稱軸上有一動點P,當時,求出點的坐標;
(3)如圖2所示,連結是線段上(不與、重合)的一個動點.過點作直線,交拋物線于點,連結、,設點的橫坐標為.當t為何值時,的面積最大?最大面積為多少?

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

如圖甲,在平面直角坐標系中,A、B的坐標分別為(4,0)、(0,3),拋物線y=x2+bx+c經過點B,且對稱軸是直線x=﹣
(1)求拋物線對應的函數(shù)解析式;
(2)將圖甲中△ABO沿x軸向左平移到△DCE(如圖乙),當四邊形ABCD是菱形時,請說明點C和點D都在該拋物線上.
(3)在(2)中,若點M是拋物線上的一個動點(點M不與點C、D重合),經過點M作MN∥y軸交直線CD于N,設點M的橫坐標為t,MN的長度為l,求l與t之間的函數(shù)解析式,并求當t為何值時,以M、N、C、E為頂點的四邊形是平行四邊形.(參考公式:拋物線y=ax2+bx+c(a≠0)的頂點坐標為(﹣),對稱軸是直線x=﹣.)

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

已知二次函數(shù).
(1)用配方法求其圖象的頂點C的坐標,并描述改函數(shù)的函數(shù)值隨自變量的增減而增減的情況;
(2)求函數(shù)圖象與x軸的交點A,B的坐標,及△ABC的面積.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:單選題

如圖是二次函數(shù)y=ax2+bx+c圖象的一部分,且過點A(3,0),二次函數(shù)圖象的對稱軸是x=1,下列結論正確的是( 。
A.b2>4acB.ac>0C.a﹣b+c>0D.4a+2b+c<0

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:單選題

如圖,在矩形ABCD中,AB=9,BC=3,點E是沿A→B方向運動,點F是沿A→D→C方向運動.現(xiàn)E、F兩點同時出發(fā)勻速運動,設點E的運動速度為每秒1個單位長度,點F的運動速度為每秒3個單位長度,當點F運動到C點時,點E立即停止運動.連接EF,設點E的運動時間為x秒,EF的長度為y個單位長度,則下列圖象中,能表示y與x的函數(shù)關系的圖象大致是(   )
A.B.C.D.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:單選題

已知關于x的二次函數(shù)y=x2-2x+c的圖像上有兩點A(x1,y1),B(x2,y2),若x1<1<x2且x1+x2=2,則y1與y2的大小關系是
A.y1<y2B.y1>y2C.y1=y(tǒng)2D.不能確定

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

已知:二次函數(shù)中的滿足下表:

……

0
1
2
3
……

……
0




……
(1)求的值;
(2)根據(jù)上表求時的的取值范圍;
(3)若兩點都在該函數(shù)圖象上,且,試比較的大小.

查看答案和解析>>

同步練習冊答案